What is the answer for sub-item (b in the picture) if the radius of the neutron star is 94.881 km? (
Q: star with mass m, period Ti = 30 days, and radius ri = 1E4 km collapses into a neutron star (Links…
A: Given that The initial radius of the stat ri = 1.0×104Km and Time…
Q: We can use the parallax equation to determine the distances (in pc) to the stars. 1 dA da dB dB = =…
A: From the given related question,we have,mv = 14Parallax of star A = 0.060 arc secondsParallax of…
Q: Which of the following is least reasonable regarding novae and supernovae? Group of answer choices…
A:
Q: If the radius of the neutron star is 85.074 km, what is the average density of a neutron star that…
A: mass of the sun, Msun=1.989×1030 kg Radius of the sun, R=85.074 km Volume, V=43πR3
Q: If an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every…
A: The expression for the Kepler’s third law is as follows: MA+MB=a3p2 1
Q: person weigh on the surface of this star?
A: Mass of sun, m Mass of star, M=1.8×m Radius of Sun, r Radius of star, R=0.06×r Given, weight of a…
Q: Determine the mean molecular mass of a star for both the scenario of being completely neutral and…
A:
Q: For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into…
A:
Q: A 1.5 M neutron star and a 0.7 M white dwarf have been found orbiting each other with a period of 10…
A: The expression for the Kepler’s third law for binary stars is as follows: MA+MB=a3p2…
Q: Assuming that at the end of the He burning phase of the stellar core (r R_core). Calculate the…
A:
Q: the parallax angle of a star to be 0.002 arc-seconds. what would the distance be to this star?
A: Given, Parallax angle, p=0.002 arc-seconds
Q: In Exercise 12.4 of your book, University Physics 15th edition (see End of the Chapter 12 section),…
A: Given, Mass of sun = Mass of neutron star = M = 1.989 × 1030 kg Radius of neutron star =…
Q: 12.4 (a) What is the average density of the sun? (b) What is the av- erage density of a neutron star…
A: We know that the density of an object is defined as the mass divided by volume. It can be given by :…
Q: What is the orbital period (in s) of a bit of matter in an accretion disk that is located 6 ✕ 105 km…
A: Write the given values with the suitable variables. r=6×105 km=6×108 mM=99Mo=992×1030 kg=198×1030 kg…
Q: The present-day density of the sun is about 1.4 g/cm3. The volume of a sphere is 4/3πr3. The density…
A: Given:ρsun=1.4g/cm3ρstar=ρsunxRsunRstar3volume of sphere =4/3πr3to find:ρsun when Rsun=50 times…
Q: A 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28…
A: Kepler’s third law for binary stars
Q: In Exercise 12.4 of your book, University Physics 15th edition (see End of the Chapter 12 section),…
A:
Q: You've just discovered a new X-ray binary, which we will call Hyp-X1 ("Hyp" for hypothetical). The…
A:
Q: Which of the following is least reasonable regarding stars on a Hertzsprung-Russell diagram?…
A: The Hertzsprung-Russell (H-R) diagram is a scatter plot of stars showing the relationship between…
Q: In Exercise 12.4 of your book, University Physics 15th edition (see End of the Chapter 12 section),…
A:
Q: In Exercise 12.4 of your book, University Physics 15th edition (see End of the Chapter 12 section),…
A: Density of an object is defined as the ratio of its mass to its volume ρ=mV For a spherical object,…
What is the answer for sub-item (b in the picture) if the radius of the neutron star is 94.881 km? (PLEASE express answer in the proper SI unit and without scientific notation)
Step by step
Solved in 2 steps
- In Exercise 12.4, what is the answer for sub-item (b) if the radius of the neutron star is 70.617 km? (express your answer in the proper SI unit and without scientific notation)The flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m². The luminosity of the supernova is 6 x 10° Lo (or 6 x 10° solar luminosities). What is the distance to the supernova in parsecs? Take 1 pc = 3.0857 x 1016 m and Lo= 3.828 x 1026 w. d = pcYou measure a star to have a parallax angle of 0.12 arc-seconds What is the distance to this star in parsecs? 8.33 Hint: d = 1/p What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]
- If a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron star? (Use the mass-radius relationship R ∝ M−1/3) What is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity, Ve = 2GM r ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.) 1.5 M neutron star km/s3.0 M neutron star km/sUsing the center-of-mass equations or the Center of Mass Calculator (under Binary-Star Basics, above), you will investigate a specific binary-star system. Assume that Star 1 has m₁ = 3.4 solar masses, Star 2 has m₂ = 1.4 solar masses, and the total separation of the two (R) is 52 AU. (One AU is Earth's average distance from the Sun.) (a)What is the distance, d₁, (in AU) from Star 1 to the center of mass? AU (b)What is the distance, d2, (in AU) from Star 2 to the center of mass? AUFor the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.
- If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every 20.8 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, M, + M3 = ; make sure you express quantities in units of AU, solar masses, and years. Assume the mass of the neutron star is 1.6 solar masses.) a3 AU(a) The figure shows the three stars and their velocities. Which star has the largest proper motion? Which star has the smallest proper motion? A B EarthFinally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?
- If a neutron star has a radius of 12 km and rotates 1,352 times a second, what is the speed at which a point on the surface at the neutron star's equator is moving? Express your answer as a fraction of the speed of light. (Note: The speed of light is 3 ✕ 105 km/s.)using the center-of-mass equations or the Carter of Mass Calculator (under Binary-Star Basics, abova), you will investigate a specific binary star system. Assume that Star 1 has m, 3.2 solar masses, Star 2 has m,-0.9 solar masses, and the total separation of the two (R) is 34 All (One AU is Earth's average distance from the Sun) (2) What is the distance, d. (In Au) from Star 1 to the center of mass? AU (b) What is the distance, dy On Au) from Star 2 to the center of mass AU ( what is the ratio of d, tod?A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.