The efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y). Тemp. 171 173 174 175 175 176 177 178 0.86 1.29 1.40 1.05 1.01 1.04 0.94 1.78 Ratio Теmp. 181 181 181| 181 182 182 183 181 1.63 2.03 2.07| 0.76 1.47 0.84 Ratio 1.41 1.56 Temp. 183 183 185 183 185 186 187 189 1.75 1.92 1.81 3.16 Ratio 2.64 1.39 2.58 2.90 A USE SALT (a) Determine the equation of the estimated regression line. (Round all numerical values to four decimal places.) (b) Calculate a point estimate for true average efficiency ratio when tank temperature is 183. (Round your answer to four decimal places.) (e) Calculate the values of the residuals from the least squares line for the four observations for which temperature is 183. (Round your answers to two decimal places.) (183, 0.84) (183, 1.75) (183, 1.92) (183, 2.64) Why do they not all have the same sign? O These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were larger than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were smaller than the predicted value. O These residuals do not all have the same sign because in the case of the second pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were larger than the predicted value. O These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were larger than the predicted value. O These residuals do not all have the same sign because in the case of the third pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were smaller than the predicted value.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y).
Temp.
171
173
174
175
175
176
177
178
Ratio
0.86
1.29
1.40
1.05
1.01
1.04
0.94
1.78
Temp.
181
181
181
181
181
182
182
183
Ratio
1.41
1.56
1.63
2.03
2.07
0.76
1.47
0.84
Temp.
183
183
183
185
185
186
187
189
Ratio
1.75
1.92
2.64
1.39
2.58
2.90
1.81
3.16
A USE SALT
(a) Determine the equation of the estimated regression line. (Round all numerical values to four decimal places.)
y =
(b) Calculate a point estimate for true average efficiency ratio when tank temperature is 183. (Round your answer to four decimal places.)
(c) Calculate the values of the residuals from the least squares line for the four observations for which temperature is 183. (Round your answers to two decimal places.)
(183, 0.84)
(183, 1.75)
(183, 1.92)
(183, 2.64)
Why do they not all have the same sign?
O These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were larger than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were smaller than the predicted value.
O These residuals do not all have the same sign because in the case of the second pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were larger than the predicted value.
These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were larger than the predicted value.
O These residuals do not all have the same sign because in the case of the third pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were smaller than the predicted value.
(d) What proportion of the observed variation in efficiency ratio can be attributed to the simple linear regression relationship between the two variables? (Round your answer to three decimal places.)
Transcribed Image Text:The efficiency for a steel specimen immersed in a phosphating tank is the weight of the phosphate coating divided by the metal loss (both in mg/ft). An article gave the accompanying data on tank temperature (x) and efficiency ratio (y). Temp. 171 173 174 175 175 176 177 178 Ratio 0.86 1.29 1.40 1.05 1.01 1.04 0.94 1.78 Temp. 181 181 181 181 181 182 182 183 Ratio 1.41 1.56 1.63 2.03 2.07 0.76 1.47 0.84 Temp. 183 183 183 185 185 186 187 189 Ratio 1.75 1.92 2.64 1.39 2.58 2.90 1.81 3.16 A USE SALT (a) Determine the equation of the estimated regression line. (Round all numerical values to four decimal places.) y = (b) Calculate a point estimate for true average efficiency ratio when tank temperature is 183. (Round your answer to four decimal places.) (c) Calculate the values of the residuals from the least squares line for the four observations for which temperature is 183. (Round your answers to two decimal places.) (183, 0.84) (183, 1.75) (183, 1.92) (183, 2.64) Why do they not all have the same sign? O These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were larger than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were smaller than the predicted value. O These residuals do not all have the same sign because in the case of the second pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were larger than the predicted value. These residuals do not all have the same sign because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller than the predicted value. In the cases of the last two pairs of observations, the observed efficiency ratios were larger than the predicted value. O These residuals do not all have the same sign because in the case of the third pair of observations, the observed efficiency ratio was equal to the predicted value. In the cases of the other pairs of observations, the observed efficiency ratios were smaller than the predicted value. (d) What proportion of the observed variation in efficiency ratio can be attributed to the simple linear regression relationship between the two variables? (Round your answer to three decimal places.)
Bivariate data often arises from the use of two different techniques to measure the same quantity. As an example, the accompanying observations on x = hydrogen concentration (ppm) using a gas chromatography method and y = concentration using a new sensor method were read from
a graph in an article.
47 63 64 70 70 79 95 100 114 118 124
127 140 140 140 150
152 164 198 221
y
39 61 52 66 85 79 93 106 117 116 127 114 134 139 142 170 149 154 200 215
n USE SALT
Construct a scatterplot.
y
y
y
y
200
200
200
200
150
150-
150
150
100
100
100
100-
50
50
50-
50
- x
50
100
150
200
50
100
150
200
50
100
150
200
50
100
150
200
Does there appear to be a very strong relationship between the two types of concentration measurements? Do the two methods appear to be measuring roughly the same quantity? Explain your reasoning.
O The points fall very close to a straight line with an x-intercept of approximately 0 and a slope of about 1. This suggests that the two methods are producing substantially the same concentration measurements.
O The points fall very close to a quadratic line with x-intercepts of approximately 0 and 225. This suggests that the two methods are producing substantially the same concentration measurements.
O The points fall very close to a quadratic line with x-intercepts of approximately 0 and 225. This suggests that the two methods are producing substantially different concentration measurements.
O The points fall very close to a straight line with an y-intercept of approximately 225 and a slope of about -1. This suggests that the two methods are producing substantially the same concentration measurements.
O The points fall very close to a straight line with an y-intercept of approximately 125 and a slope of about 0. This suggests that the two methods are producing substantially the same concentration measurements.
Transcribed Image Text:Bivariate data often arises from the use of two different techniques to measure the same quantity. As an example, the accompanying observations on x = hydrogen concentration (ppm) using a gas chromatography method and y = concentration using a new sensor method were read from a graph in an article. 47 63 64 70 70 79 95 100 114 118 124 127 140 140 140 150 152 164 198 221 y 39 61 52 66 85 79 93 106 117 116 127 114 134 139 142 170 149 154 200 215 n USE SALT Construct a scatterplot. y y y y 200 200 200 200 150 150- 150 150 100 100 100 100- 50 50 50- 50 - x 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 Does there appear to be a very strong relationship between the two types of concentration measurements? Do the two methods appear to be measuring roughly the same quantity? Explain your reasoning. O The points fall very close to a straight line with an x-intercept of approximately 0 and a slope of about 1. This suggests that the two methods are producing substantially the same concentration measurements. O The points fall very close to a quadratic line with x-intercepts of approximately 0 and 225. This suggests that the two methods are producing substantially the same concentration measurements. O The points fall very close to a quadratic line with x-intercepts of approximately 0 and 225. This suggests that the two methods are producing substantially different concentration measurements. O The points fall very close to a straight line with an y-intercept of approximately 225 and a slope of about -1. This suggests that the two methods are producing substantially the same concentration measurements. O The points fall very close to a straight line with an y-intercept of approximately 125 and a slope of about 0. This suggests that the two methods are producing substantially the same concentration measurements.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman