The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m3/s air at atmospheric conditions of 20°C and 1 bar (100 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of 8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83- m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is 60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 88 percent, determine the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ɛ = 0.00015 m. The dynamic viscosity of air at 60°C is µ= 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm. The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be 100 kPa = 1.189 kg/m³ %3D Pin = RTim (0.287 kPa-m/kg-K)(20+273 K) p = Pline = Pine 900 kPa = 9.417 kg/m³ %3D RTine (0.287 kPa-m/kg-K)(60+273 K) The power wasted in the transportation line is kW.
The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m3/s air at atmospheric conditions of 20°C and 1 bar (100 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of 8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83- m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is 60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 88 percent, determine the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ɛ = 0.00015 m. The dynamic viscosity of air at 60°C is µ= 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm. The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be 100 kPa = 1.189 kg/m³ %3D Pin = RTim (0.287 kPa-m/kg-K)(20+273 K) p = Pline = Pine 900 kPa = 9.417 kg/m³ %3D RTine (0.287 kPa-m/kg-K)(60+273 K) The power wasted in the transportation line is kW.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
![The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m3ls air at atmospheric
conditions of 20°C and 1 bar (10o0 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of
8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83-
m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is
60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 88 percent, determine
the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ɛ = 0.00015 m. The dynamic
viscosity of air at 60°C is u= 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm.
The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be
100 kPa
Pin =
= 1.189 kg/m³
RTm
(0.287 kPa-m'/kg-K)(20+273 K)
Pine
900 kPa
p = Pline = RT
RTine
= 9.417 kg/m3
(0.287 kPa-m/kg-K)(60+273 K)
The power wasted in the transportation line is
|kW.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcb5e3d88-b796-4443-b241-fc3b9985c73a%2F515743bb-22c8-4bd6-a303-3d49f688ce26%2Fvlsze2k_processed.png&w=3840&q=75)
Transcribed Image Text:The compressed air requirements of a textile factory are met by a large compressor that draws in 0.6 m3ls air at atmospheric
conditions of 20°C and 1 bar (10o0 kPa) and consumes 300 kW electric power when operating. Air is compressed to a gage pressure of
8 bar (absolute pressure of 900 kPa), and compressed air is transported to the production area through a 30-cm-internal-diameter, 83-
m-long, galvanized steel pipe with a surface roughness of 0.15 mm. The average temperature of compressed air in the pipe is
60°C. The compressed air line has 8 elbows with a loss coefficient of 0.6 each. If the compressor efficiency is 88 percent, determine
the power wasted in the transportation line. The roughness of a galvanized steel pipe is given to be ɛ = 0.00015 m. The dynamic
viscosity of air at 60°C is u= 2.008 × 10-5 kg/m-s, and it is independent of pressure. The density of air listed in that table is for 1 atm.
The density at 20°C, 100 kPa and 60°C, 900 kPa can be determined from the ideal gas relation to be
100 kPa
Pin =
= 1.189 kg/m³
RTm
(0.287 kPa-m'/kg-K)(20+273 K)
Pine
900 kPa
p = Pline = RT
RTine
= 9.417 kg/m3
(0.287 kPa-m/kg-K)(60+273 K)
The power wasted in the transportation line is
|kW.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning