The accompanying data file contains 40 observations on the response variable y along with the predictor variables x and d. Consider two linear regression models where Model 1 uses the variables x and d and Model 2 extends the model by including the interaction variable xd. Use the holdout method to compare the predictability of the models using the first 30 observations for training and the remaining 10 observations for validation.   y x d 70 11 1 102 19 1 76 12 1 83 14 1 61 17 0 62 13 0 67 20 0 98 16 1 84 11 1 101 15 1 51 16 0 108 16 1 32 13 0 71 15 1 101 17 1 90 15 1 112 19 1 88 13 1 110 18 1 95 17 1 44 14 0 51 19 0 112 17 1 113 17 1 52 13 0 61 10 1 100 16 1 78 14 1 90 16 1 57 16 0 59 15 0 53 15 0 119 19 1 109 18 1 68 11 0 104 19 1 45 18 0 67 17 0 65 15 0 74 14 1 1. Use the training set to estimate Models 1 and 2. Note: Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.   2. Calculate the RMSE of the two models in the validation set. Note: Do not round intermediate calculations and round final answers to 2 decimal places.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

The accompanying data file contains 40 observations on the response variable y along with the predictor variables x and d. Consider two linear regression models where Model 1 uses the variables x and d and Model 2 extends the model by including the interaction variable xd. Use the holdout method to compare the predictability of the models using the first 30 observations for training and the remaining 10 observations for validation.

 

y x d
70 11 1
102 19 1
76 12 1
83 14 1
61 17 0
62 13 0
67 20 0
98 16 1
84 11 1
101 15 1
51 16 0
108 16 1
32 13 0
71 15 1
101 17 1
90 15 1
112 19 1
88 13 1
110 18 1
95 17 1
44 14 0
51 19 0
112 17 1
113 17 1
52 13 0
61 10 1
100 16 1
78 14 1
90 16 1
57 16 0
59 15 0
53 15 0
119 19 1
109 18 1
68 11 0
104 19 1
45 18 0
67 17 0
65 15 0
74 14 1

1. Use the training set to estimate Models 1 and 2.

Note: Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.

 

2. Calculate the RMSE of the two models in the validation set.

Note: Do not round intermediate calculations and round final answers to 2 decimal places.

 

3. 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman