Standard Normal Distribution Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .00 .03 .04 05 .06 .07 08 09 3.50 and 0001 -3.50 and lower lower -3.4 0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0002 -3.4 -3.3 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.3 -3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.2 -3.1 .0010 0009 .0009 .0009 .0008 .0008 .0008 0008 0007 .0007 -3.1 -3.0 0013 0013 .0013 .0012 .0012 .0011 .0011 .0011 0010 0010 -3.0 -2.9 0019 0018 0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.9 -2.8 0026 .0025 0024 0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.8 -2.7 0035 0034 0033 0032 .0031 .0030 .0029 .0028 .0027 0026 -27 -2.6 0047 .0045 0044 0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.6 -2.5 0062 .0060 .0059 .0057 .0055 .0064 .0052 .0051 .0049 0048 -2.5 -24 0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.4 -2.3 0107 0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 0084 -2.3 -2.2 0139 .0136 0132 0129 0125 0122 .0119 .0116 0113 0110 -2.2 -2.1 0179 .0174 0170 0166 0162 0158 0154 .0150 .0146 0143 -2.1 -2.0 0228 0222 0217 0212 .0207 0202 0197 0192 .0188 0183 -2.0 -1.9 0287 0281 .0274 0268 .0262 .0256 .0250 0244 .0239 0233 -1.9 -1.8 .0359 .0361 0344 0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.8 -1.7 0446 0436 .0427 0418 .0409 0401 .0392 .0384 .0375 .0367 -1.7 -1.6 0548 0537 0526 0516 .0505 .0495 .0485 .0475 0465 0455 -1.6 -1.5 0668 0655 0643 .0630 .0618 .0606 0594 .0582 .0571 0559 -1.5 -14 0808 0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 0681 -1.4 -1.3 0968 .0961 0934 .0918 .0901 0885 .0869 .0853 0838 .0823 -1.3 -1.2 .1151 1131 1112 .1093 .1075 1056 1038 .1020 .1003 .0985 -1.2 -1.1 1357 1335 1314 .1292 1271 .1251 1230 1210 1190 1170 -1.1 -1.0 1587 1562 1539 1515 1492 .1469 1446 1423 1401 1379 -1.0 -0.9 1841 1814 .1788 1762 1736 .1711 .1685 1660 1635 1611 -0.9 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 .1894 1867 -0.8 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 .2177 2148 -0.7 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 .2451 -0.6 -0.5 3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.5 -04 3446 3409 3372 3336 3300 3264 3228 .3192 3156 3121 -0.4 -0.3 3821 3783 .3745 .3707 3669 3632 3594 .3557 3520 3483 -0.3 -0.2 A207 4168 4129 4090 4052 4013 3974 3936 3897 3859 -0.2 -0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247 -0.1 -0.0 5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 -0.0 2 .00 .01 0 .03 .04 .05 06 .07 08 09 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z below 3.49, use 0.0001 for the area. Standard Normal Distribution Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (2) Distribution: Cumulative Area from the LEFT Z .00 .01 .02 .03 .04 05 06 .07 .08 09 Z 0.0 0.3 0.5 ཿ ཏྠུ སཱུ ཥྛཿ ྤ E ུ ཨྠ བྷྲ ཋ " " ༠ - ཞཱ ཕྱ ་ ༞ ཤ 8 ཀླུ 8 8 རྩ ཤྩ ཝཿ རྨུ གླུ གླ བྷ ངྐུ སྐྱི ཤྩ ནྟ 5000 5040 5080 5120 .5160 .5199 .5239 .5279 .5319 5359 0.0 5398 5438 5478 .5517 5557 .5596 5636 5675 5714 5753 0.1 5793 5832 .5871 5910 .5948 5987 6026 .6064 6103 .6141 0.2 6179 6217 6255 6293 .6331 .6368 .6406 6443 .6480 .6517 0.3 6554 6591 6628 6664 .6700 .6736 .6772 .6808 6844 .6879 0.4 6915 6950 .6985 7019 7064 .7088 .7123 .7157 7190 7224 0.5 .7257 .7291 7324 7357 7389 .7422 7454 .7486 .7517 7549 0.6 7580 .7611 7642 7673 7704 .7734 .7764 .7794 .7823 .7852 0.7 7881 7910 .7939 7967 7995 8023 .8051 .8078 8106 8133 0.8 8159 8186 8212 8238 8264 .8289 .8315 .8340 8365 8389 0.9 8413 8438 .8461 .8485 8508 .8531 8554 .8577 8599 .8621 1.0 8643 8665 8686 .8708 8729 .8749 .8770 .8790 8810 .8830 1.1 8849 .8869 8888 .8907 8925 8944 .8962 8960 .8997 9015 1.2 9032 .9049 9066 9082 9099 9115 .9131 9147 9162 .9177 1.3 9192 9207 9222 9236 9251 9265 .9279 9292 .9306 .9319 14 9332 .9345 9357 9370 9382 9394 .9406 9418 9429 9441 1.5 9452 9463 9474 9484 9495 9505 .9515 .9525 .9535 9545 1.6 9554 9564 9573 .9582 .9591 .9599 9608 .9616 .9625 9633 1.7 9641 9649 9656 .9664 .9671 .9678 9686 9693 9699 9706 1.8 9713 9719 9726 .9732 .9738 .9744 9750 .9756 9761 .9767 1.9 9772 .9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817 2.0 9821 9826 9830 9834 .9838 .9842 .9846 .9850 .9854 9857 2.1 9861 9864 .9868 9871 .9875 .9878 9881 .9884 .9887 9890 2.2 9893 9896 9898 9901 9904 9906 9909 .9911 .9913 9916 2.3 9918 9920 9922 9925 9927 .9929 9931 9932 9934 9936 2.4 9938 9940 .9941 9943 9945 .9946 9948 9949 .9951 .9952 2.5 9963 9965 9966 9957 .9959 9960 .9961 9962 9963 9964 2.6 9965 9966 9967 9968 .9969 .9970 .9971 .9972 .9973 9974 2.7 9974 9975 9976 9977 .9977 .9978 9979 9979 9980 9981 2.8 9981 .9982 9982 9983 9984 9984 9985 9985 9986 9986 2.9 9987 .9987 9987 9988 .9988 9989 9989 9989 9990 .9990 3.0 9990 9991 .9991 9991 9992 .9992 9992 9992 9993 9993 3.1 9993 9993 9994 9994 9994 .9994 9994 9995 9995 9995 3.2 9995 9995 9995 9996 9996 9996 9996 9996 9996 9997 3.3 9997 .9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50. and up 9999 3.50. and up 2 .00 01 02 .03 .04 05 .06 .07 .08 .09 2 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: Common Critical Values Confidence Critical
Standard Normal Distribution Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .00 .03 .04 05 .06 .07 08 09 3.50 and 0001 -3.50 and lower lower -3.4 0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0002 -3.4 -3.3 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.3 -3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.2 -3.1 .0010 0009 .0009 .0009 .0008 .0008 .0008 0008 0007 .0007 -3.1 -3.0 0013 0013 .0013 .0012 .0012 .0011 .0011 .0011 0010 0010 -3.0 -2.9 0019 0018 0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.9 -2.8 0026 .0025 0024 0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.8 -2.7 0035 0034 0033 0032 .0031 .0030 .0029 .0028 .0027 0026 -27 -2.6 0047 .0045 0044 0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.6 -2.5 0062 .0060 .0059 .0057 .0055 .0064 .0052 .0051 .0049 0048 -2.5 -24 0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.4 -2.3 0107 0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 0084 -2.3 -2.2 0139 .0136 0132 0129 0125 0122 .0119 .0116 0113 0110 -2.2 -2.1 0179 .0174 0170 0166 0162 0158 0154 .0150 .0146 0143 -2.1 -2.0 0228 0222 0217 0212 .0207 0202 0197 0192 .0188 0183 -2.0 -1.9 0287 0281 .0274 0268 .0262 .0256 .0250 0244 .0239 0233 -1.9 -1.8 .0359 .0361 0344 0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.8 -1.7 0446 0436 .0427 0418 .0409 0401 .0392 .0384 .0375 .0367 -1.7 -1.6 0548 0537 0526 0516 .0505 .0495 .0485 .0475 0465 0455 -1.6 -1.5 0668 0655 0643 .0630 .0618 .0606 0594 .0582 .0571 0559 -1.5 -14 0808 0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 0681 -1.4 -1.3 0968 .0961 0934 .0918 .0901 0885 .0869 .0853 0838 .0823 -1.3 -1.2 .1151 1131 1112 .1093 .1075 1056 1038 .1020 .1003 .0985 -1.2 -1.1 1357 1335 1314 .1292 1271 .1251 1230 1210 1190 1170 -1.1 -1.0 1587 1562 1539 1515 1492 .1469 1446 1423 1401 1379 -1.0 -0.9 1841 1814 .1788 1762 1736 .1711 .1685 1660 1635 1611 -0.9 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 .1894 1867 -0.8 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 .2177 2148 -0.7 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 .2451 -0.6 -0.5 3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.5 -04 3446 3409 3372 3336 3300 3264 3228 .3192 3156 3121 -0.4 -0.3 3821 3783 .3745 .3707 3669 3632 3594 .3557 3520 3483 -0.3 -0.2 A207 4168 4129 4090 4052 4013 3974 3936 3897 3859 -0.2 -0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247 -0.1 -0.0 5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 -0.0 2 .00 .01 0 .03 .04 .05 06 .07 08 09 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z below 3.49, use 0.0001 for the area. Standard Normal Distribution Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (2) Distribution: Cumulative Area from the LEFT Z .00 .01 .02 .03 .04 05 06 .07 .08 09 Z 0.0 0.3 0.5 ཿ ཏྠུ སཱུ ཥྛཿ ྤ E ུ ཨྠ བྷྲ ཋ " " ༠ - ཞཱ ཕྱ ་ ༞ ཤ 8 ཀླུ 8 8 རྩ ཤྩ ཝཿ རྨུ གླུ གླ བྷ ངྐུ སྐྱི ཤྩ ནྟ 5000 5040 5080 5120 .5160 .5199 .5239 .5279 .5319 5359 0.0 5398 5438 5478 .5517 5557 .5596 5636 5675 5714 5753 0.1 5793 5832 .5871 5910 .5948 5987 6026 .6064 6103 .6141 0.2 6179 6217 6255 6293 .6331 .6368 .6406 6443 .6480 .6517 0.3 6554 6591 6628 6664 .6700 .6736 .6772 .6808 6844 .6879 0.4 6915 6950 .6985 7019 7064 .7088 .7123 .7157 7190 7224 0.5 .7257 .7291 7324 7357 7389 .7422 7454 .7486 .7517 7549 0.6 7580 .7611 7642 7673 7704 .7734 .7764 .7794 .7823 .7852 0.7 7881 7910 .7939 7967 7995 8023 .8051 .8078 8106 8133 0.8 8159 8186 8212 8238 8264 .8289 .8315 .8340 8365 8389 0.9 8413 8438 .8461 .8485 8508 .8531 8554 .8577 8599 .8621 1.0 8643 8665 8686 .8708 8729 .8749 .8770 .8790 8810 .8830 1.1 8849 .8869 8888 .8907 8925 8944 .8962 8960 .8997 9015 1.2 9032 .9049 9066 9082 9099 9115 .9131 9147 9162 .9177 1.3 9192 9207 9222 9236 9251 9265 .9279 9292 .9306 .9319 14 9332 .9345 9357 9370 9382 9394 .9406 9418 9429 9441 1.5 9452 9463 9474 9484 9495 9505 .9515 .9525 .9535 9545 1.6 9554 9564 9573 .9582 .9591 .9599 9608 .9616 .9625 9633 1.7 9641 9649 9656 .9664 .9671 .9678 9686 9693 9699 9706 1.8 9713 9719 9726 .9732 .9738 .9744 9750 .9756 9761 .9767 1.9 9772 .9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817 2.0 9821 9826 9830 9834 .9838 .9842 .9846 .9850 .9854 9857 2.1 9861 9864 .9868 9871 .9875 .9878 9881 .9884 .9887 9890 2.2 9893 9896 9898 9901 9904 9906 9909 .9911 .9913 9916 2.3 9918 9920 9922 9925 9927 .9929 9931 9932 9934 9936 2.4 9938 9940 .9941 9943 9945 .9946 9948 9949 .9951 .9952 2.5 9963 9965 9966 9957 .9959 9960 .9961 9962 9963 9964 2.6 9965 9966 9967 9968 .9969 .9970 .9971 .9972 .9973 9974 2.7 9974 9975 9976 9977 .9977 .9978 9979 9979 9980 9981 2.8 9981 .9982 9982 9983 9984 9984 9985 9985 9986 9986 2.9 9987 .9987 9987 9988 .9988 9989 9989 9989 9990 .9990 3.0 9990 9991 .9991 9991 9992 .9992 9992 9992 9993 9993 3.1 9993 9993 9994 9994 9994 .9994 9994 9995 9995 9995 3.2 9995 9995 9995 9996 9996 9996 9996 9996 9996 9997 3.3 9997 .9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50. and up 9999 3.50. and up 2 .00 01 02 .03 .04 05 .06 .07 .08 .09 2 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: Common Critical Values Confidence Critical
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
The test statistic of z = 1.98 is obtained when testing the claim that p ≠ 0.752.
a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.
b. Find the P-value.
c. Using a significance level of a = 0.10, should we reject Ho or should we fail to reject Ho?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman