Standard Normal Distribution Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .00 .03 .04 05 .06 .07 08 09 3.50 and 0001 -3.50 and lower lower -3.4 0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0002 -3.4 -3.3 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.3 -3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.2 -3.1 .0010 0009 .0009 .0009 .0008 .0008 .0008 0008 0007 .0007 -3.1 -3.0 0013 0013 .0013 .0012 .0012 .0011 .0011 .0011 0010 0010 -3.0 -2.9 0019 0018 0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.9 -2.8 0026 .0025 0024 0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.8 -2.7 0035 0034 0033 0032 .0031 .0030 .0029 .0028 .0027 0026 -27 -2.6 0047 .0045 0044 0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.6 -2.5 0062 .0060 .0059 .0057 .0055 .0064 .0052 .0051 .0049 0048 -2.5 -24 0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.4 -2.3 0107 0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 0084 -2.3 -2.2 0139 .0136 0132 0129 0125 0122 .0119 .0116 0113 0110 -2.2 -2.1 0179 .0174 0170 0166 0162 0158 0154 .0150 .0146 0143 -2.1 -2.0 0228 0222 0217 0212 .0207 0202 0197 0192 .0188 0183 -2.0 -1.9 0287 0281 .0274 0268 .0262 .0256 .0250 0244 .0239 0233 -1.9 -1.8 .0359 .0361 0344 0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.8 -1.7 0446 0436 .0427 0418 .0409 0401 .0392 .0384 .0375 .0367 -1.7 -1.6 0548 0537 0526 0516 .0505 .0495 .0485 .0475 0465 0455 -1.6 -1.5 0668 0655 0643 .0630 .0618 .0606 0594 .0582 .0571 0559 -1.5 -14 0808 0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 0681 -1.4 -1.3 0968 .0961 0934 .0918 .0901 0885 .0869 .0853 0838 .0823 -1.3 -1.2 .1151 1131 1112 .1093 .1075 1056 1038 .1020 .1003 .0985 -1.2 -1.1 1357 1335 1314 .1292 1271 .1251 1230 1210 1190 1170 -1.1 -1.0 1587 1562 1539 1515 1492 .1469 1446 1423 1401 1379 -1.0 -0.9 1841 1814 .1788 1762 1736 .1711 .1685 1660 1635 1611 -0.9 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 .1894 1867 -0.8 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 .2177 2148 -0.7 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 .2451 -0.6 -0.5 3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.5 -04 3446 3409 3372 3336 3300 3264 3228 .3192 3156 3121 -0.4 -0.3 3821 3783 .3745 .3707 3669 3632 3594 .3557 3520 3483 -0.3 -0.2 A207 4168 4129 4090 4052 4013 3974 3936 3897 3859 -0.2 -0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247 -0.1 -0.0 5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 -0.0 2 .00 .01 0 .03 .04 .05 06 .07 08 09 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z below 3.49, use 0.0001 for the area. Standard Normal Distribution Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (2) Distribution: Cumulative Area from the LEFT Z .00 .01 .02 .03 .04 05 06 .07 .08 09 Z 0.0 0.3 0.5 ཿ ཏྠུ སཱུ ཥྛཿ ྤ E ུ ཨྠ བྷྲ ཋ " " ༠ - ཞཱ ཕྱ ་ ༞ ཤ 8 ཀླུ 8 8 རྩ ཤྩ ཝཿ རྨུ གླུ གླ བྷ ངྐུ སྐྱི ཤྩ ནྟ 5000 5040 5080 5120 .5160 .5199 .5239 .5279 .5319 5359 0.0 5398 5438 5478 .5517 5557 .5596 5636 5675 5714 5753 0.1 5793 5832 .5871 5910 .5948 5987 6026 .6064 6103 .6141 0.2 6179 6217 6255 6293 .6331 .6368 .6406 6443 .6480 .6517 0.3 6554 6591 6628 6664 .6700 .6736 .6772 .6808 6844 .6879 0.4 6915 6950 .6985 7019 7064 .7088 .7123 .7157 7190 7224 0.5 .7257 .7291 7324 7357 7389 .7422 7454 .7486 .7517 7549 0.6 7580 .7611 7642 7673 7704 .7734 .7764 .7794 .7823 .7852 0.7 7881 7910 .7939 7967 7995 8023 .8051 .8078 8106 8133 0.8 8159 8186 8212 8238 8264 .8289 .8315 .8340 8365 8389 0.9 8413 8438 .8461 .8485 8508 .8531 8554 .8577 8599 .8621 1.0 8643 8665 8686 .8708 8729 .8749 .8770 .8790 8810 .8830 1.1 8849 .8869 8888 .8907 8925 8944 .8962 8960 .8997 9015 1.2 9032 .9049 9066 9082 9099 9115 .9131 9147 9162 .9177 1.3 9192 9207 9222 9236 9251 9265 .9279 9292 .9306 .9319 14 9332 .9345 9357 9370 9382 9394 .9406 9418 9429 9441 1.5 9452 9463 9474 9484 9495 9505 .9515 .9525 .9535 9545 1.6 9554 9564 9573 .9582 .9591 .9599 9608 .9616 .9625 9633 1.7 9641 9649 9656 .9664 .9671 .9678 9686 9693 9699 9706 1.8 9713 9719 9726 .9732 .9738 .9744 9750 .9756 9761 .9767 1.9 9772 .9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817 2.0 9821 9826 9830 9834 .9838 .9842 .9846 .9850 .9854 9857 2.1 9861 9864 .9868 9871 .9875 .9878 9881 .9884 .9887 9890 2.2 9893 9896 9898 9901 9904 9906 9909 .9911 .9913 9916 2.3 9918 9920 9922 9925 9927 .9929 9931 9932 9934 9936 2.4 9938 9940 .9941 9943 9945 .9946 9948 9949 .9951 .9952 2.5 9963 9965 9966 9957 .9959 9960 .9961 9962 9963 9964 2.6 9965 9966 9967 9968 .9969 .9970 .9971 .9972 .9973 9974 2.7 9974 9975 9976 9977 .9977 .9978 9979 9979 9980 9981 2.8 9981 .9982 9982 9983 9984 9984 9985 9985 9986 9986 2.9 9987 .9987 9987 9988 .9988 9989 9989 9989 9990 .9990 3.0 9990 9991 .9991 9991 9992 .9992 9992 9992 9993 9993 3.1 9993 9993 9994 9994 9994 .9994 9994 9995 9995 9995 3.2 9995 9995 9995 9996 9996 9996 9996 9996 9996 9997 3.3 9997 .9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50. and up 9999 3.50. and up 2 .00 01 02 .03 .04 05 .06 .07 .08 .09 2 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: Common Critical Values Confidence Critical

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
The test statistic of z = 1.98 is obtained when testing the claim that p ≠ 0.752. a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed. b. Find the P-value. c. Using a significance level of a = 0.10, should we reject Ho or should we fail to reject Ho?
Standard Normal Distribution Table (Page 1)
NEGATIVE z Scores
Standard Normal (2) Distribution: Cumulative Area from the LEFT
.00
.01
.00
.03
.04
05
.06
.07
08
09
3.50 and
0001
-3.50 and
lower
lower
-3.4
0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
0002
-3.4
-3.3
0005
.0005
.0005
.0004
.0004
.0004
.0004
.0004
.0004
.0003
-3.3
-3.2
.0007
.0007
0006
.0006
.0006
.0006
.0006
.0005
.0005
.0005
-3.2
-3.1
.0010
0009
.0009
.0009
.0008
.0008
.0008
0008
0007
.0007
-3.1
-3.0
0013
0013
.0013
.0012
.0012
.0011
.0011
.0011
0010
0010
-3.0
-2.9
0019
0018
0018
.0017
.0016
.0016
.0015
.0015
.0014
.0014
-2.9
-2.8
0026
.0025
0024
0023
.0023
.0022
.0021
.0021
.0020
.0019
-2.8
-2.7
0035
0034
0033
0032
.0031
.0030
.0029
.0028
.0027
0026
-27
-2.6
0047
.0045
0044
0043
.0041
.0040
.0039
.0038
.0037
.0036
-2.6
-2.5
0062
.0060
.0059
.0057
.0055
.0064
.0052
.0051
.0049
0048
-2.5
-24
0082
.0080
0078
.0075
.0073
.0071
0069
.0068
.0066
.0064
-2.4
-2.3
0107
0104
0102
.0099
.0096
.0094
.0091
.0089
.0087
0084
-2.3
-2.2
0139
.0136
0132
0129
0125
0122
.0119
.0116
0113
0110
-2.2
-2.1
0179
.0174
0170
0166
0162
0158
0154
.0150
.0146
0143
-2.1
-2.0
0228
0222
0217
0212
.0207
0202
0197
0192
.0188
0183
-2.0
-1.9
0287
0281
.0274
0268
.0262
.0256
.0250
0244
.0239
0233
-1.9
-1.8
.0359
.0361
0344
0336
.0329
.0322
.0314
.0307
.0301
.0294
-1.8
-1.7
0446
0436
.0427
0418
.0409
0401
.0392
.0384
.0375
.0367
-1.7
-1.6
0548
0537
0526
0516
.0505
.0495
.0485
.0475
0465
0455
-1.6
-1.5
0668
0655
0643
.0630
.0618
.0606
0594
.0582
.0571
0559
-1.5
-14
0808
0793
.0778
.0764
.0749
.0735
.0721
.0708
.0694
0681
-1.4
-1.3
0968
.0961
0934
.0918
.0901
0885
.0869
.0853
0838
.0823
-1.3
-1.2
.1151
1131
1112
.1093
.1075
1056
1038
.1020
.1003
.0985
-1.2
-1.1
1357
1335
1314
.1292
1271
.1251
1230
1210
1190
1170
-1.1
-1.0
1587
1562
1539
1515
1492
.1469
1446
1423
1401
1379
-1.0
-0.9
1841
1814
.1788
1762
1736
.1711
.1685
1660
1635
1611
-0.9
-0.8
2119
2090
2061
2033
2005
1977
1949
1922
.1894
1867
-0.8
-0.7
2420
2389
2358
2327
2296
2266
2236
2206
.2177
2148
-0.7
-0.6
2743
2709
2676
2643
2611
2578
2546
2514
2483
.2451
-0.6
-0.5
3085
3050
3015
2981
2946
2912
2877
2843
2810
2776
-0.5
-04
3446
3409
3372
3336
3300
3264
3228
.3192
3156
3121
-0.4
-0.3
3821
3783
.3745
.3707
3669
3632
3594
.3557
3520
3483
-0.3
-0.2
A207
4168
4129
4090
4052
4013
3974
3936
3897
3859
-0.2
-0.1
4602
4562
4522
4483
4443
4404
4364
4325
4286
4247
-0.1
-0.0
5000
4960
4920
4880
4840
4801
4761
4721
4681
4641
-0.0
2
.00
.01
0
.03
.04
.05
06
.07
08
09
Standard Normal (2) Distribution: Cumulative Area from the LEFT
NOTE: For values of z below 3.49, use 0.0001 for the area.
Transcribed Image Text:Standard Normal Distribution Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .00 .03 .04 05 .06 .07 08 09 3.50 and 0001 -3.50 and lower lower -3.4 0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0002 -3.4 -3.3 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.3 -3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.2 -3.1 .0010 0009 .0009 .0009 .0008 .0008 .0008 0008 0007 .0007 -3.1 -3.0 0013 0013 .0013 .0012 .0012 .0011 .0011 .0011 0010 0010 -3.0 -2.9 0019 0018 0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.9 -2.8 0026 .0025 0024 0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.8 -2.7 0035 0034 0033 0032 .0031 .0030 .0029 .0028 .0027 0026 -27 -2.6 0047 .0045 0044 0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.6 -2.5 0062 .0060 .0059 .0057 .0055 .0064 .0052 .0051 .0049 0048 -2.5 -24 0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.4 -2.3 0107 0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 0084 -2.3 -2.2 0139 .0136 0132 0129 0125 0122 .0119 .0116 0113 0110 -2.2 -2.1 0179 .0174 0170 0166 0162 0158 0154 .0150 .0146 0143 -2.1 -2.0 0228 0222 0217 0212 .0207 0202 0197 0192 .0188 0183 -2.0 -1.9 0287 0281 .0274 0268 .0262 .0256 .0250 0244 .0239 0233 -1.9 -1.8 .0359 .0361 0344 0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.8 -1.7 0446 0436 .0427 0418 .0409 0401 .0392 .0384 .0375 .0367 -1.7 -1.6 0548 0537 0526 0516 .0505 .0495 .0485 .0475 0465 0455 -1.6 -1.5 0668 0655 0643 .0630 .0618 .0606 0594 .0582 .0571 0559 -1.5 -14 0808 0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 0681 -1.4 -1.3 0968 .0961 0934 .0918 .0901 0885 .0869 .0853 0838 .0823 -1.3 -1.2 .1151 1131 1112 .1093 .1075 1056 1038 .1020 .1003 .0985 -1.2 -1.1 1357 1335 1314 .1292 1271 .1251 1230 1210 1190 1170 -1.1 -1.0 1587 1562 1539 1515 1492 .1469 1446 1423 1401 1379 -1.0 -0.9 1841 1814 .1788 1762 1736 .1711 .1685 1660 1635 1611 -0.9 -0.8 2119 2090 2061 2033 2005 1977 1949 1922 .1894 1867 -0.8 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 .2177 2148 -0.7 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 .2451 -0.6 -0.5 3085 3050 3015 2981 2946 2912 2877 2843 2810 2776 -0.5 -04 3446 3409 3372 3336 3300 3264 3228 .3192 3156 3121 -0.4 -0.3 3821 3783 .3745 .3707 3669 3632 3594 .3557 3520 3483 -0.3 -0.2 A207 4168 4129 4090 4052 4013 3974 3936 3897 3859 -0.2 -0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286 4247 -0.1 -0.0 5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 -0.0 2 .00 .01 0 .03 .04 .05 06 .07 08 09 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z below 3.49, use 0.0001 for the area.
Standard Normal Distribution Table (Page 2)
POSITIVE z Scores
0
Z
Standard Normal (2) Distribution: Cumulative Area from the LEFT
Z
.00
.01
.02
.03
.04
05
06
.07
.08
09
Z
0.0
0.3
0.5
 ཿ ཏྠུ སཱུ ཥྛཿ  ྤ E  ུ ཨྠ བྷྲ ཋ " " ༠ - ཞཱ ཕྱ ་ ༞ ཤ 8 ཀླུ 8 8 རྩ ཤྩ ཝཿ རྨུ གླུ གླ བྷ ངྐུ སྐྱི ཤྩ ནྟ
5000
5040
5080
5120
.5160
.5199
.5239
.5279
.5319
5359
0.0
5398
5438
5478
.5517
5557
.5596
5636
5675
5714
5753
0.1
5793
5832
.5871
5910
.5948
5987
6026
.6064
6103
.6141
0.2
6179
6217
6255
6293
.6331
.6368
.6406
6443
.6480
.6517
0.3
6554
6591
6628
6664
.6700
.6736
.6772
.6808
6844
.6879
0.4
6915
6950
.6985
7019
7064
.7088
.7123
.7157
7190
7224
0.5
.7257
.7291
7324
7357
7389
.7422
7454
.7486
.7517
7549
0.6
7580
.7611
7642
7673
7704
.7734
.7764
.7794
.7823
.7852
0.7
7881
7910
.7939
7967
7995
8023
.8051
.8078
8106
8133
0.8
8159
8186
8212
8238
8264
.8289
.8315
.8340
8365
8389
0.9
8413
8438
.8461
.8485
8508
.8531
8554
.8577
8599
.8621
1.0
8643
8665
8686
.8708
8729
.8749
.8770
.8790
8810
.8830
1.1
8849
.8869
8888
.8907
8925
8944
.8962
8960
.8997
9015
1.2
9032
.9049
9066
9082
9099
9115
.9131
9147
9162
.9177
1.3
9192
9207
9222
9236
9251
9265
.9279
9292
.9306
.9319
14
9332
.9345
9357
9370
9382
9394
.9406
9418
9429
9441
1.5
9452
9463
9474
9484
9495
9505
.9515
.9525
.9535
9545
1.6
9554
9564
9573
.9582
.9591
.9599
9608
.9616
.9625
9633
1.7
9641
9649
9656
.9664
.9671
.9678
9686
9693
9699
9706
1.8
9713
9719
9726
.9732
.9738
.9744
9750
.9756
9761
.9767
1.9
9772
.9778
9783
9788
9793
.9798
.9803
.9808
.9812
.9817
2.0
9821
9826
9830
9834
.9838
.9842
.9846
.9850
.9854
9857
2.1
9861
9864
.9868
9871
.9875
.9878
9881
.9884
.9887
9890
2.2
9893
9896
9898
9901
9904
9906
9909
.9911
.9913
9916
2.3
9918
9920
9922
9925
9927
.9929
9931
9932
9934
9936
2.4
9938
9940
.9941
9943
9945
.9946
9948
9949
.9951
.9952
2.5
9963
9965
9966
9957
.9959
9960
.9961
9962
9963
9964
2.6
9965
9966
9967
9968
.9969
.9970
.9971
.9972
.9973
9974
2.7
9974
9975
9976
9977
.9977
.9978
9979
9979
9980
9981
2.8
9981
.9982
9982
9983
9984
9984
9985
9985
9986
9986
2.9
9987
.9987
9987
9988
.9988
9989
9989
9989
9990
.9990
3.0
9990
9991
.9991
9991
9992
.9992
9992
9992
9993
9993
3.1
9993
9993
9994
9994
9994
.9994
9994
9995
9995
9995
3.2
9995
9995
9995
9996
9996
9996
9996
9996
9996
9997
3.3
9997
.9997
9997
9997
9997
9997
9997
9997
9997
9998
3.4
3.50. and up
9999
3.50. and up
2
.00
01
02
.03
.04
05
.06
.07
.08
.09
2
Standard Normal (2) Distribution: Cumulative Area from the LEFT
NOTE: For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation:
Common Critical Values
Confidence Critical
Transcribed Image Text:Standard Normal Distribution Table (Page 2) POSITIVE z Scores 0 Z Standard Normal (2) Distribution: Cumulative Area from the LEFT Z .00 .01 .02 .03 .04 05 06 .07 .08 09 Z 0.0 0.3 0.5 ཿ ཏྠུ སཱུ ཥྛཿ ྤ E ུ ཨྠ བྷྲ ཋ " " ༠ - ཞཱ ཕྱ ་ ༞ ཤ 8 ཀླུ 8 8 རྩ ཤྩ ཝཿ རྨུ གླུ གླ བྷ ངྐུ སྐྱི ཤྩ ནྟ 5000 5040 5080 5120 .5160 .5199 .5239 .5279 .5319 5359 0.0 5398 5438 5478 .5517 5557 .5596 5636 5675 5714 5753 0.1 5793 5832 .5871 5910 .5948 5987 6026 .6064 6103 .6141 0.2 6179 6217 6255 6293 .6331 .6368 .6406 6443 .6480 .6517 0.3 6554 6591 6628 6664 .6700 .6736 .6772 .6808 6844 .6879 0.4 6915 6950 .6985 7019 7064 .7088 .7123 .7157 7190 7224 0.5 .7257 .7291 7324 7357 7389 .7422 7454 .7486 .7517 7549 0.6 7580 .7611 7642 7673 7704 .7734 .7764 .7794 .7823 .7852 0.7 7881 7910 .7939 7967 7995 8023 .8051 .8078 8106 8133 0.8 8159 8186 8212 8238 8264 .8289 .8315 .8340 8365 8389 0.9 8413 8438 .8461 .8485 8508 .8531 8554 .8577 8599 .8621 1.0 8643 8665 8686 .8708 8729 .8749 .8770 .8790 8810 .8830 1.1 8849 .8869 8888 .8907 8925 8944 .8962 8960 .8997 9015 1.2 9032 .9049 9066 9082 9099 9115 .9131 9147 9162 .9177 1.3 9192 9207 9222 9236 9251 9265 .9279 9292 .9306 .9319 14 9332 .9345 9357 9370 9382 9394 .9406 9418 9429 9441 1.5 9452 9463 9474 9484 9495 9505 .9515 .9525 .9535 9545 1.6 9554 9564 9573 .9582 .9591 .9599 9608 .9616 .9625 9633 1.7 9641 9649 9656 .9664 .9671 .9678 9686 9693 9699 9706 1.8 9713 9719 9726 .9732 .9738 .9744 9750 .9756 9761 .9767 1.9 9772 .9778 9783 9788 9793 .9798 .9803 .9808 .9812 .9817 2.0 9821 9826 9830 9834 .9838 .9842 .9846 .9850 .9854 9857 2.1 9861 9864 .9868 9871 .9875 .9878 9881 .9884 .9887 9890 2.2 9893 9896 9898 9901 9904 9906 9909 .9911 .9913 9916 2.3 9918 9920 9922 9925 9927 .9929 9931 9932 9934 9936 2.4 9938 9940 .9941 9943 9945 .9946 9948 9949 .9951 .9952 2.5 9963 9965 9966 9957 .9959 9960 .9961 9962 9963 9964 2.6 9965 9966 9967 9968 .9969 .9970 .9971 .9972 .9973 9974 2.7 9974 9975 9976 9977 .9977 .9978 9979 9979 9980 9981 2.8 9981 .9982 9982 9983 9984 9984 9985 9985 9986 9986 2.9 9987 .9987 9987 9988 .9988 9989 9989 9989 9990 .9990 3.0 9990 9991 .9991 9991 9992 .9992 9992 9992 9993 9993 3.1 9993 9993 9994 9994 9994 .9994 9994 9995 9995 9995 3.2 9995 9995 9995 9996 9996 9996 9996 9996 9996 9997 3.3 9997 .9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50. and up 9999 3.50. and up 2 .00 01 02 .03 .04 05 .06 .07 .08 .09 2 Standard Normal (2) Distribution: Cumulative Area from the LEFT NOTE: For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: Common Critical Values Confidence Critical
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman