Sketch f(y) versus y. Show that y is increasing as a function of t for y < 1 and also for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus solutions below the equilibrium solution approach it, and those above it grow farther away. Therefore, ϕ(t) = 1 is semistable.
Sketch f(y) versus y. Show that y is increasing as a function of t for y < 1 and also for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus solutions below the equilibrium solution approach it, and those above it grow farther away. Therefore, ϕ(t) = 1 is semistable.
Related questions
Question
Sketch f(y) versus y. Show that y is increasing as a function of t for y < 1 and also for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus solutions below the equilibrium solution approach it, and those above it grow farther away. Therefore, ϕ(t) = 1 is semistable.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 4 images