Claim: For any function † (q,p,t), df Proof: df = dt af {f, H} + (4.62) Ət af af af Ət - %+%*+% = dt дрі

icon
Related questions
Question

It says (in blue highlighted) that I will be of constant motion if I and H poisson commute.

Please show that this is true in detail.

Claim: For any function f(q, p,t),
Proof:
df
af
{f, H} +
(4.62)
dt
Ət
df
dt
=
af
дрі
af
af
·Pi +
-ġi +
Əqi
Ət
- 94 -
дf дн
дf ән
=
+
მp; მq; да дрі
af
= {ƒ,H} +
Ət
+
55
af
(4.63)
Ət
Isn't this a lovely equation! One consequence is that if we can find a function I (p,q)
which satisfy
{I, H} = 0
(4.64)
then I is a constant of motion. We say that I and H Poisson commute. As an example
of this, suppose that q; is ignorable (i.e. it does not appear in H) then
{pi, H}
(4.65)
Transcribed Image Text:Claim: For any function f(q, p,t), Proof: df af {f, H} + (4.62) dt Ət df dt = af дрі af af ·Pi + -ġi + Əqi Ət - 94 - дf дн дf ән = + მp; მq; да дрі af = {ƒ,H} + Ət + 55 af (4.63) Ət Isn't this a lovely equation! One consequence is that if we can find a function I (p,q) which satisfy {I, H} = 0 (4.64) then I is a constant of motion. We say that I and H Poisson commute. As an example of this, suppose that q; is ignorable (i.e. it does not appear in H) then {pi, H} (4.65)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions