Claim: For any function † (q,p,t), df Proof: df = dt af {f, H} + (4.62) Ət af af af Ət - %+%*+% = dt дрі
Claim: For any function † (q,p,t), df Proof: df = dt af {f, H} + (4.62) Ət af af af Ət - %+%*+% = dt дрі
Related questions
Question
It says (in blue highlighted) that I will be of constant motion if I and H poisson commute.
Please show that this is true in detail.

Transcribed Image Text:Claim: For any function f(q, p,t),
Proof:
df
af
{f, H} +
(4.62)
dt
Ət
df
dt
=
af
дрі
af
af
·Pi +
-ġi +
Əqi
Ət
- 94 -
дf дн
дf ән
=
+
მp; მq; да дрі
af
= {ƒ,H} +
Ət
+
55
af
(4.63)
Ət
Isn't this a lovely equation! One consequence is that if we can find a function I (p,q)
which satisfy
{I, H} = 0
(4.64)
then I is a constant of motion. We say that I and H Poisson commute. As an example
of this, suppose that q; is ignorable (i.e. it does not appear in H) then
{pi, H}
(4.65)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
