Reconsider Prob. 14–54. Using EES (or other) software, plot the highest rate of hydrogen loss as a function of the mole fraction of hydrogen in natural gas as the mole fraction varies from 5 to 15 percent, and discuss the results. Problem. 14–54 The solubility of hydrogen gas in steel in terms of its mass fraction is given as wH2 2.09 × 10-4 exp (–3950/T)P where  PH2 is the partial pressure of hydrogen in bars and T is t temperature in K. If natural gas is transported in a 1-cm-thick, 3-m-internal-diameter steel pipe at 500 kPa pressure and the mole fraction of hydrogen in the natural gas is 8 percent, determine the highest rate of hydrogen loss through a 100-m-long section of the pipe at steady conditions at a temperature of 293 K if the pipe is exposed to air. Take the diffusivity of hydrogen in steel to be 2.9 × 10-13 m2/s.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

Reconsider Prob. 14–54. Using EES (or other) software, plot the highest rate of hydrogen loss as a function of the mole fraction of hydrogen in natural gas as the mole fraction varies from 5 to 15 percent, and discuss the results.

Problem. 14–54

The solubility of hydrogen gas in steel in terms of its mass fraction is given as wH2 2.09 × 10-4 exp

(–3950/T)P where  PH2 is the partial pressure of hydrogen in bars and T is t temperature in K. If natural gas is transported in a 1-cm-thick, 3-m-internal-diameter steel pipe at 500 kPa pressure and the mole fraction of hydrogen in the natural gas is 8 percent, determine the highest rate of hydrogen loss through a 100-m-long section of the pipe at steady conditions at a temperature of 293 K if the pipe is exposed to air. Take the diffusivity of hydrogen in steel to be 2.9 × 10-13 m2/s.

 

Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The