Question 3: An electronic device with a temperature of 84°C (shown in golden colour) is embedded inside a composite plastic tube which is equipped with three fins (shown in blue) to enhance the convective heat transfer with the surrounding air. The composite tube is held horizontally. The temperature drop along the fins can be ignored due to their high thermal conductivity. The outer ring of the fins (shown in brown) is insulated. The ambient temperature is 20°C. 3d. Calculate the heat transfer coefficients across the cylinder 3e. Calculate the heat transfer coefficients across the fins by assuming fins as vertical planes 31. Calculate the heat loss across the system Aluminium fins Diameter = 30 cm Insulated ring Thickness = 5 mm Composite tube Thickness = 5 mm Thermal conductivity = 25 W/mk Tube is held horizontally. Air 20°C Hot electronic device Temperature = 84°C Diameter = 10 cm Length = 100 cm

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 3: An electronic device with a temperature of 84°C (shown in golden colour) is
embedded inside a composite plastic tube which is equipped with three fins (shown in blue)
to enhance the convective heat transfer with the surrounding air. The composite tube is held
horizontally. The temperature drop along the fins can be ignored due to their high thermal
conductivity. The outer ring of the fins (shown in brown) is insulated. The ambient
temperature is 20°C.
3d. Calculate the heat transfer coefficients across the cylinder
3e. Calculate the heat transfer coefficients across the fins by assuming fins as vertical
planes
31. Calculate the heat loss across the system
Aluminium fins
Diameter = 30 cm
Insulated ring
Thickness = 5 mm
Composite tube
Thickness = 5 mm
Thermal conductivity = 25 W/mk
Tube is held horizontally.
Air
20°C
Hot electronic device
Temperature = 84°C
Diameter = 10 cm
Length = 100 cm
%3D
Transcribed Image Text:Question 3: An electronic device with a temperature of 84°C (shown in golden colour) is embedded inside a composite plastic tube which is equipped with three fins (shown in blue) to enhance the convective heat transfer with the surrounding air. The composite tube is held horizontally. The temperature drop along the fins can be ignored due to their high thermal conductivity. The outer ring of the fins (shown in brown) is insulated. The ambient temperature is 20°C. 3d. Calculate the heat transfer coefficients across the cylinder 3e. Calculate the heat transfer coefficients across the fins by assuming fins as vertical planes 31. Calculate the heat loss across the system Aluminium fins Diameter = 30 cm Insulated ring Thickness = 5 mm Composite tube Thickness = 5 mm Thermal conductivity = 25 W/mk Tube is held horizontally. Air 20°C Hot electronic device Temperature = 84°C Diameter = 10 cm Length = 100 cm %3D
Expert Solution
steps

Step by step

Solved in 4 steps with 11 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY