Provide details about the reation workup. How is this product purified , and what methods were used to prove they had the right material ? N-ETHYLALLENIMINE[Aziridine, 1-ethyl-2-methylene-] Submitted by Albert T. Bottini and Robert E. Olsen1.Checked by Thomas H. Lowry and E. J. Corey. 1. ProcedureCaution! This preparation should be carried out in a good hood to avoid exposure to ammonia. The operator should wear rubber gloves and protective goggles because 2-haloallylamines and ethylenimines can cause severe skin and eye irritation.A 2-l. three-necked flask is fitted with a sealed mechanical stirrer, a gas-inlet tube, and a dry ice condenser protected from the air by a soda-lime drying tube (Note 1). The system is flushed thoroughly with dry ammonia, and 32.8 g. (0.84 mole) of sodium amide (Note 2) is added to the flask. The system is again flushed with ammonia, the condenser is provided with dry ice covered by acetone, and 1.2 l. of liquid ammonia is condensed in the flask. The gas-inlet tube is replaced with a dropping funnel, the stirrer is started, and 118 g. (0.72 mole) of N-(2-bromoallyl)ethylamine2 is added dropwise in 20–30 minutes; during the addition, the ammonia boils vigorously, and the color of the slurry changes from gray to black. Stirring is continued for 3 hours, and the dry ice is then allowed to evaporate. The condenser is provided with an ice-salt mixture, and the ammonia is allowed to evaporate until the volume is reduced to about 800 ml. (Note 3). Ethanol-free ether (200 ml.) is added rapidly through the dropping funnel, and the reaction is stopped by the slow, dropwise addition (Caution!) of 5 ml. of water. The ammonia is allowed to evaporate overnight. Water (150 ml.) and 100 ml. of ether are added to the residue, and the mixture is stirred for 2 minutes in order to dissolve the precipitated salts. The resulting mixture, which consists of aqueous and ethereal solutions, is separated, and the aqueous phase is extracted with 75 ml. of ether. The ether solutions are combined, dried over sodium hydroxide (Note 4), and distilled through an efficient low-holdup column (Note 5). The fraction with b.p. 77–80°, n25D 1.4260–1.4268, which is 96–97% N-ethylallenimine (Note 6), weighs 30–34 g. (48–55%). Pure (>99.5%) N-ethylallenimine has b.p. 77–79°, n25D 1.4281–1.4284 (Note 7) and (Note 8).
Nucleotides
It is an organic molecule made up of three basic components- a nitrogenous base, phosphate,and pentose sugar. The nucleotides are important for metabolic reactions andthe formation of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
Nucleic Acids
Nucleic acids are essential biomolecules present in prokaryotic and eukaryotic cells and viruses. They carry the genetic information for the synthesis of proteins and cellular replication. The nucleic acids are of two types: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The structure of all proteins and ultimately every biomolecule and cellular component is a product of information encoded in the sequence of nucleic acids. Parts of a DNA molecule containing the information needed to synthesize a protein or an RNA are genes. Nucleic acids can store and transmit genetic information from one generation to the next, fundamental to any life form.
Provide details about the reation workup.
How is this product purified , and what methods were used to prove they had the right material ?
N-ETHYLALLENIMINE
[Aziridine, 1-ethyl-2-methylene-]
Submitted by Albert T. Bottini and Robert E. Olsen1.
Checked by Thomas H. Lowry and E. J. Corey.
1. Procedure
Caution! This preparation should be carried out in a good hood to avoid exposure to ammonia. The operator should wear rubber gloves and protective goggles because 2-haloallylamines and ethylenimines can cause severe skin and eye irritation.
A 2-l. three-necked flask is fitted with a sealed mechanical stirrer, a gas-inlet tube, and a dry ice condenser protected from the air by a soda-lime drying tube (Note 1). The system is flushed thoroughly with dry ammonia, and 32.8 g. (0.84 mole) of sodium amide (Note 2) is added to the flask. The system is again flushed with ammonia, the condenser is provided with dry ice covered by acetone, and 1.2 l. of liquid ammonia is condensed in the flask. The gas-inlet tube is replaced with a dropping funnel, the stirrer is started, and 118 g. (0.72 mole) of N-(2-bromoallyl)ethylamine2 is added dropwise in 20–30 minutes; during the addition, the ammonia boils vigorously, and the color of the slurry changes from gray to black. Stirring is continued for 3 hours, and the dry ice is then allowed to evaporate. The condenser is provided with an ice-salt mixture, and the ammonia is allowed to evaporate until the volume is reduced to about 800 ml. (Note 3). Ethanol-free ether (200 ml.) is added rapidly through the dropping funnel, and the reaction is stopped by the slow, dropwise addition (Caution!) of 5 ml. of water. The ammonia is allowed to evaporate overnight. Water (150 ml.) and 100 ml. of ether are added to the residue, and the mixture is stirred for 2 minutes in order to dissolve the precipitated salts. The resulting mixture, which consists of aqueous and ethereal solutions, is separated, and the aqueous phase is extracted with 75 ml. of ether. The ether solutions are combined, dried over sodium hydroxide (Note 4), and distilled through an efficient low-holdup column (Note 5). The fraction with b.p. 77–80°, n25D 1.4260–1.4268, which is 96–97% N-ethylallenimine (Note 6), weighs 30–34 g. (48–55%). Pure (>99.5%) N-ethylallenimine has b.p. 77–79°, n25D 1.4281–1.4284 (Note 7) and (Note 8).
Unlock instant AI solutions
Tap the button
to generate a solution