Prove that for every integer n ≥ 3, (1¹ – 31) (¹ − 4 ) ··· (1¹ – ²/1 ) - 32 (n+1)(n+2) 6n(n − 1)
Prove that for every integer n ≥ 3, (1¹ – 31) (¹ − 4 ) ··· (1¹ – ²/1 ) - 32 (n+1)(n+2) 6n(n − 1)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Prove that for every integer \( n \geq 3 \),
\[
\left( 1 - \frac{4}{3^2} \right) \left( 1 - \frac{4}{4^2} \right) \cdots \left( 1 - \frac{4}{n^2} \right) = \frac{(n + 1)(n + 2)}{6n(n - 1)}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa5eb2a13-496e-4b1e-8665-be34187ea098%2F9b86b0fd-ee05-4ef1-8483-218491cf3d09%2Fw2u9sqg_processed.png&w=3840&q=75)
Transcribed Image Text:Prove that for every integer \( n \geq 3 \),
\[
\left( 1 - \frac{4}{3^2} \right) \left( 1 - \frac{4}{4^2} \right) \cdots \left( 1 - \frac{4}{n^2} \right) = \frac{(n + 1)(n + 2)}{6n(n - 1)}
\]
Expert Solution

Step 1: first two steps in induction law:
Let the given statement is
we will prove the above statement by using mathematical induction law as follows:
for n = 3 , L.H.S. =
R.H.S =
hence for n= 3 , L.H.S. = R.H.S.
that means is true.
Assume that is true for an integer
.
......... ( 1 )
Step by step
Solved in 3 steps with 20 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

