Let T: ²->² be a linear transformation that maps u = Use the fact that T is linear to find the image of 3u + v. -16 0[-] 8 O-33 24 7 1 -55 32 -6 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Title: Understanding Linear Transformations in Vector Spaces**

**Introduction**

In this section, we will explore how to apply linear transformations to vectors in a given vector space. Specifically, we will understand how to use linearity properties to find the image of a combination of vectors given the transformation of other vectors.

**Linear Transformation Problem**

Consider a linear transformation \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined such that:

\[ u = \begin{bmatrix} -6 \\ 4 \end{bmatrix} \text{ maps to } \begin{bmatrix} -22 \\ 12 \end{bmatrix} \]

\[ v = \begin{bmatrix} -5 \\ 2 \end{bmatrix} \text{ maps to } \begin{bmatrix} -4 \\ 11 \end{bmatrix} \]

We are asked to find the image of the vector \( 3u + v \) under the linear transformation \( T \).

**Using the Linearity Property**

The linearity of the transformation \( T \) implies that for any vectors \( u \) and \( v \), and scalars \( a \) and \( b \), we have:

\[ T(au + bv) = aT(u) + bT(v) \]

Given:
\[ u = \begin{bmatrix} -6 \\ 4 \end{bmatrix}, \ T(u) = \begin{bmatrix} -22 \\ 12 \end{bmatrix} \]
\[ v = \begin{bmatrix} -5 \\ 2 \end{bmatrix}, \ T(v) = \begin{bmatrix} -4 \\ 11 \end{bmatrix} \]

We need to find:
\[ T(3u + v) \]

First, calculate the vector \( 3u + v \):
\[ 3u = 3 \begin{bmatrix} -6 \\ 4 \end{bmatrix} = \begin{bmatrix} -18 \\ 12 \end{bmatrix} \]
\[ 3u + v = \begin{bmatrix} -18 \\ 12 \end{bmatrix} + \begin{bmatrix} -5 \\ 2 \end{bmatrix} = \begin{bmatrix} -23 \\ 14 \end{bmatrix}
Transcribed Image Text:**Title: Understanding Linear Transformations in Vector Spaces** **Introduction** In this section, we will explore how to apply linear transformations to vectors in a given vector space. Specifically, we will understand how to use linearity properties to find the image of a combination of vectors given the transformation of other vectors. **Linear Transformation Problem** Consider a linear transformation \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined such that: \[ u = \begin{bmatrix} -6 \\ 4 \end{bmatrix} \text{ maps to } \begin{bmatrix} -22 \\ 12 \end{bmatrix} \] \[ v = \begin{bmatrix} -5 \\ 2 \end{bmatrix} \text{ maps to } \begin{bmatrix} -4 \\ 11 \end{bmatrix} \] We are asked to find the image of the vector \( 3u + v \) under the linear transformation \( T \). **Using the Linearity Property** The linearity of the transformation \( T \) implies that for any vectors \( u \) and \( v \), and scalars \( a \) and \( b \), we have: \[ T(au + bv) = aT(u) + bT(v) \] Given: \[ u = \begin{bmatrix} -6 \\ 4 \end{bmatrix}, \ T(u) = \begin{bmatrix} -22 \\ 12 \end{bmatrix} \] \[ v = \begin{bmatrix} -5 \\ 2 \end{bmatrix}, \ T(v) = \begin{bmatrix} -4 \\ 11 \end{bmatrix} \] We need to find: \[ T(3u + v) \] First, calculate the vector \( 3u + v \): \[ 3u = 3 \begin{bmatrix} -6 \\ 4 \end{bmatrix} = \begin{bmatrix} -18 \\ 12 \end{bmatrix} \] \[ 3u + v = \begin{bmatrix} -18 \\ 12 \end{bmatrix} + \begin{bmatrix} -5 \\ 2 \end{bmatrix} = \begin{bmatrix} -23 \\ 14 \end{bmatrix}
**Title: Non-Trivial Solutions for a Given Matrix**

**Problem Statement:**
Suppose \( A = \begin{bmatrix} 4 & 5 & -1 \\ 0 & 12 & -4 \\ -3 & 6 & 4 \end{bmatrix} \) that gives a non-trivial solution.

**Options:**
- \( \begin{bmatrix} 8 \\ 2 \\ 3 \end{bmatrix} \)
- \( \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \)
- \( \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \)
- \( \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \)

**Explanation:**
To determine which of the provided vectors represents a non-trivial solution for the matrix \( A \), one must solve the equation \( A\mathbf{x} = \mathbf{0} \).

A **non-trivial solution** means that \( \mathbf{x} \neq \mathbf{0} \), meaning the vector \( \mathbf{x} \) must not be the zero vector.

By analyzing the given options, we seek the vector that, when multiplied by matrix \( A \), results in the zero vector, which confirms that the matrix equation \( A\mathbf{x} = \mathbf{0} \) holds true.
Transcribed Image Text:**Title: Non-Trivial Solutions for a Given Matrix** **Problem Statement:** Suppose \( A = \begin{bmatrix} 4 & 5 & -1 \\ 0 & 12 & -4 \\ -3 & 6 & 4 \end{bmatrix} \) that gives a non-trivial solution. **Options:** - \( \begin{bmatrix} 8 \\ 2 \\ 3 \end{bmatrix} \) - \( \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \) - \( \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \) - \( \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \) **Explanation:** To determine which of the provided vectors represents a non-trivial solution for the matrix \( A \), one must solve the equation \( A\mathbf{x} = \mathbf{0} \). A **non-trivial solution** means that \( \mathbf{x} \neq \mathbf{0} \), meaning the vector \( \mathbf{x} \) must not be the zero vector. By analyzing the given options, we seek the vector that, when multiplied by matrix \( A \), results in the zero vector, which confirms that the matrix equation \( A\mathbf{x} = \mathbf{0} \) holds true.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,