PROBLEM A 50:50 mixture of acetone (A) and water (W) is fed to a series of two extractors using methyl isobutyl ketone (M) as the extracting solvent. Each extractor was designed to output S kg) Se (kg) the same amount of extract which was then mixed to obtain Fkg) 50% acetone R1 (kg) R2 (kg) EXTRACTOR 1 EXTRACTOR a combined extract having a composition of 46% acetone, 42% methyl isobutyl ketone, and 12% water. This mixture is then fed to a distillation column that is designed to obtain a final distillate composition of 97% acetone, 2% methyl isobutyl ketone, and 1% water. Overall, the process is designed to generate 25 kg of acetone-rich distillate (D) from 100 kg of the raw acetone-water mixture for every hour of 50% water E (kg) E (kg) COLUMN operation. 3 (kg) If the two-extractor system is designed such that feeding 25 kg of methyl isobutyl ketone to the second extractor will generate a raffinate with a composition of 5% acetone, 2% methyl isobutyl ketone, and 93% water, and an extract with a composition of 26% acetone 69% methyl isobutyl ketone, and 5% water, determine the following: 1. The mass flowrate (kg/h) of the final raffinate stream. 2. The required mass flowrate (kg/h) of the methyl isobutyl ketone in the first extractor. 3. The composition (mass %) of the intermediate raffinate stream. 4. The percentage of the acetone lost in the bottoms.
PROBLEM A 50:50 mixture of acetone (A) and water (W) is fed to a series of two extractors using methyl isobutyl ketone (M) as the extracting solvent. Each extractor was designed to output S kg) Se (kg) the same amount of extract which was then mixed to obtain Fkg) 50% acetone R1 (kg) R2 (kg) EXTRACTOR 1 EXTRACTOR a combined extract having a composition of 46% acetone, 42% methyl isobutyl ketone, and 12% water. This mixture is then fed to a distillation column that is designed to obtain a final distillate composition of 97% acetone, 2% methyl isobutyl ketone, and 1% water. Overall, the process is designed to generate 25 kg of acetone-rich distillate (D) from 100 kg of the raw acetone-water mixture for every hour of 50% water E (kg) E (kg) COLUMN operation. 3 (kg) If the two-extractor system is designed such that feeding 25 kg of methyl isobutyl ketone to the second extractor will generate a raffinate with a composition of 5% acetone, 2% methyl isobutyl ketone, and 93% water, and an extract with a composition of 26% acetone 69% methyl isobutyl ketone, and 5% water, determine the following: 1. The mass flowrate (kg/h) of the final raffinate stream. 2. The required mass flowrate (kg/h) of the methyl isobutyl ketone in the first extractor. 3. The composition (mass %) of the intermediate raffinate stream. 4. The percentage of the acetone lost in the bottoms.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 14 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The