Problem 1. For uniform flow over a flat plate, a useful approximation for the x-component of velocity in an incompressible laminar boundary layer is a parabolic variation from the velocity at the surface, u (y = 0) = 0 due to no-slip condition, to the free-stream velocity at the edge of the boundary layer, u (y = 8) = U. The equation for the profile is given by u/U = 2 (y/d) – (y/8)², where d = cx 1/2 and c is a constant - (a) Show that the simplest expression for the y-component of velocity is (b) Plot u/U and v/U versus y/d at x = separate graphs. 2 *=4[4(9)²¯ +(9)*] = 0.50 m where = 5.0 mm. Use the x-axis for velocity and plot on (c) Find the maximum value for v/U at this location and discuss its magnitude compared to u/U. АУ u(x, y) U

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Problem 1. For uniform flow over a flat plate, a useful approximation for the x-component of velocity in an
incompressible laminar boundary layer is a parabolic variation from the velocity at the surface, u (y = 0) = 0
due to no-slip condition, to the free-stream velocity at the edge of the boundary layer, u (y = 8) = U. The
equation for the profile is given by
u/U = 2 (y/d) – (y/8)², where d = cx 1/2 and c is a constant
-
(a) Show that the simplest expression for the y-component of velocity is
(b) Plot u/U and v/U versus y/d at x =
separate graphs.
2
*=4[4(9)²¯ +(9)*]
= 0.50 m where = 5.0 mm. Use the x-axis for velocity and plot on
(c) Find the maximum value for v/U at this location and discuss its magnitude compared to u/U.
АУ
u(x, y)
U
Transcribed Image Text:Problem 1. For uniform flow over a flat plate, a useful approximation for the x-component of velocity in an incompressible laminar boundary layer is a parabolic variation from the velocity at the surface, u (y = 0) = 0 due to no-slip condition, to the free-stream velocity at the edge of the boundary layer, u (y = 8) = U. The equation for the profile is given by u/U = 2 (y/d) – (y/8)², where d = cx 1/2 and c is a constant - (a) Show that the simplest expression for the y-component of velocity is (b) Plot u/U and v/U versus y/d at x = separate graphs. 2 *=4[4(9)²¯ +(9)*] = 0.50 m where = 5.0 mm. Use the x-axis for velocity and plot on (c) Find the maximum value for v/U at this location and discuss its magnitude compared to u/U. АУ u(x, y) U
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY