One End Insulated, One End Fixed Temperature In this model, one end of the wire is maintained at a fixed temperature (say 0°C), while the other end is insulated. du/dt = k d2u/dx2 Where k > 0 is a constant (the thermal conductivity of the material). Boundary Conditions and Initial Condition: At both ends of the wire, the temperature is fixed at zero: u (0,t) = 0 and u(L,t) = 0 The initial temperature distribution along the wire can be some function f(x), where: u(x,0)=f(x), for 0≤x≤L, u(x, 0) = f (x), foro≤x≤L 0 temperature u L x insulation

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter2: Steady Heat Conduction
Section: Chapter Questions
Problem 2.21P
icon
Related questions
Question
One End Insulated, One End Fixed Temperature
In this model, one end of the wire is maintained at a fixed temperature (say 0°C), while the other end is
insulated. du/dt = k d2u/dx2
Where k > 0 is a constant (the thermal conductivity of the material).
Boundary Conditions and Initial Condition:
At both ends of the wire, the temperature is fixed at zero:
u (0,t) = 0 and u(L,t) = 0
The initial temperature distribution along the wire can be some function f(x), where:
u(x,0)=f(x), for 0≤x≤L, u(x, 0) = f (x), foro≤x≤L
0
temperature u
L
x
insulation
Transcribed Image Text:One End Insulated, One End Fixed Temperature In this model, one end of the wire is maintained at a fixed temperature (say 0°C), while the other end is insulated. du/dt = k d2u/dx2 Where k > 0 is a constant (the thermal conductivity of the material). Boundary Conditions and Initial Condition: At both ends of the wire, the temperature is fixed at zero: u (0,t) = 0 and u(L,t) = 0 The initial temperature distribution along the wire can be some function f(x), where: u(x,0)=f(x), for 0≤x≤L, u(x, 0) = f (x), foro≤x≤L 0 temperature u L x insulation
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning