Model the vein in a patient's arm to be of rectangular cross section, as shown in the figure, with a width w = 4.00 mm and height h = 3.85 mm. The entire section of the vein is immersed in a constant magnetic field of B = 0.0955 T, pointing horizontally and parallel to the width. A medical device constantly monitors the resulting Hall voltage. Suppose that medical precautions mandate that the speed of the blood flow for this particular component of the body should never drop below 21.50 cm/s. At what minimum Hall voltage VH, in millivolts, should the medical device be designed to trigger an alarm to the medical staff?

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

help with answer!

In medicine, it is often important to monitor the blood flow in certain areas of the body. However, the movement of blood is
difficult to monitor directly. Instead, some medical devices use the Hall effect, taking advantage of the fact that the blood flowing
through a vein contains a considerable number of free ions.
В
+
+
+
Model the vein in a patient's arm to be of rectangular cross section, as shown in the figure, with a width w = 4.00 mm and
height h = 3.85 mm. The entire section of the vein is immersed in a constant magnetic field of B = 0.0955 T, pointing
horizontally and parallel to the width. A medical device constantly monitors the resulting Hall voltage.
Suppose that medical precautions mandate that the speed of the blood flow for this particular component of the body should
never drop below 21.50 cm/s. At what minimum Hall voltage VH, in millivolts, should the medical device be designed to trigger
an alarm to the medical staff?
VH =
mV
Transcribed Image Text:In medicine, it is often important to monitor the blood flow in certain areas of the body. However, the movement of blood is difficult to monitor directly. Instead, some medical devices use the Hall effect, taking advantage of the fact that the blood flowing through a vein contains a considerable number of free ions. В + + + Model the vein in a patient's arm to be of rectangular cross section, as shown in the figure, with a width w = 4.00 mm and height h = 3.85 mm. The entire section of the vein is immersed in a constant magnetic field of B = 0.0955 T, pointing horizontally and parallel to the width. A medical device constantly monitors the resulting Hall voltage. Suppose that medical precautions mandate that the speed of the blood flow for this particular component of the body should never drop below 21.50 cm/s. At what minimum Hall voltage VH, in millivolts, should the medical device be designed to trigger an alarm to the medical staff? VH = mV
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Digital Modulation Scheme (Amplitude-Shift Keying [ASK], Phase-Shift Keying [PSK], Frequency-Shift Keying [FSK])
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,