mi 1 0 cos(0.7) 0 sin(0.7) Let m3 = m₁m₂m sin(0.7) cos(0.7) m₂ cos(-0.5) sin(-0.5) sin(-0.5) cos(-0.5) 0 0 0 Choose one of the eigenvalue and eigenvector pair of m, i.e., (A € C, v € C³). An then show that (m! - Alsx3)v = 0 € R³. Note: The result may be very very small numbers because of floating point error.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
m₁
1
0 cos(0.7) sin(0.7)
0 sin(0.7) cos(0.7)
]
Let m3 = m₁m₂m
m₂
cos(-0.5) sin(-0.5)
sin(-0.5) cos(-0.5) 0
0
0
1
Choose one of the eigenvalue and eigenvector pair of m, i.e., (λ € C, v € C³). An
then show that (m - AI3x3)v = 0 € R³.
Note: The result may be very very small numbers because of floating point error.
Transcribed Image Text:m₁ 1 0 cos(0.7) sin(0.7) 0 sin(0.7) cos(0.7) ] Let m3 = m₁m₂m m₂ cos(-0.5) sin(-0.5) sin(-0.5) cos(-0.5) 0 0 0 1 Choose one of the eigenvalue and eigenvector pair of m, i.e., (λ € C, v € C³). An then show that (m - AI3x3)v = 0 € R³. Note: The result may be very very small numbers because of floating point error.
Expert Solution
Step 1: Introduction

Given that:

m subscript 1 equals open square brackets table row 1 1 0 row 0 cell cos open parentheses 0.7 close parentheses end cell cell negative sin open parentheses 0.7 close parentheses end cell row 0 cell sin open parentheses 0.7 close parentheses end cell cell cos open parentheses 0.7 close parentheses end cell end table close square brackets comma space space m subscript 2 equals open square brackets table row cell cos open parentheses negative 0.5 close parentheses end cell cell negative sin open parentheses negative 0.5 close parentheses end cell 0 row cell sin open parentheses negative 0.5 close parentheses end cell cell cos open parentheses negative 0.5 close parentheses end cell 0 row 0 0 1 end table close square brackets
m subscript 3 equals m subscript 1 m subscript 2 m subscript 1

To show that: open parentheses m subscript 3 superscript T minus lambda I close parentheses v equals 0 element of straight real numbers cubed

steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,