(a) Find the eigenvalues and eigen-functions for the problem ƒ” (x) + \ƒ(x) = 0, f(0) = 0, ƒ'(2) = = 0 (b) Discuss the orthogonality relation for the eigen-functions in part (a) (c) Find the general solution of the problem ut (x, t) =9uxx (x, t), 0≤x≤2, t>0 u(0, t) =0, ux (2, t) = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Part Cc please

Solve the following problems
(a) Find the eigenvalues and eigen-functions for the problem
ƒ” (x) + \ƒ(x) = 0, ƒ(0) = 0, ƒ'(2) = 0
(b) Discuss the orthogonality relation for the eigen-functions in part (a)
(c) Find the general solution of the problem
ut (x, t) =9uxx (x, t), 0≤x≤2, t>0
u(0, t)=0, ux (2, t) = 0
Transcribed Image Text:Solve the following problems (a) Find the eigenvalues and eigen-functions for the problem ƒ” (x) + \ƒ(x) = 0, ƒ(0) = 0, ƒ'(2) = 0 (b) Discuss the orthogonality relation for the eigen-functions in part (a) (c) Find the general solution of the problem ut (x, t) =9uxx (x, t), 0≤x≤2, t>0 u(0, t)=0, ux (2, t) = 0
Expert Solution
Step 1: Finding the eigen value and eigen function

(a)  f''(x)+λfx=0,   f0=0, f'2=0

Let λ=0

fx=ax+bf0=0b=0f'(2)=0a=0

Therefore f(x)=0

For λ=-μ2

f"x-μ2fx=0fx=Aeμx+Be-μxf0=A+B=0fx=Aeμx-Ae-μxf'x=Aμeμx+Aμe-μxf'2=Aμeμ2+Aμe-μ2             =0     A=0fx=0

For λ=μ2

f"x+μ2fx=0fx=Acosμx+Bsinμxf0=A=0fx=Bsinμxf'x=Bμcosμxf'2=Bμcosμ2             =02μ=nπ+π2μ=2nπ+π4

Therefore the corresponding eigen value is λn=2nπ+π42

The corresponding eigen function is sin2nπ+π4x

ynx=Bnsin2nπ+π4x

 

 

 

 

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,