Mechanical engineer Kwok Wai Tham of the National University of Singapore set out to sample how much virus COVID-19 patients produce when they breathe, talk or sing, in part, to address skeptics’ concerns. “I’m doing this to convince some very close friends,” he says. He and colleagues rolled a mobile lab into 22 patients’ rooms and had volunteers stick their heads into a large metal cone. The researchers collected both aerosols and larger droplets that the patients exhaled while breathing quietly for 30 minutes, while repeating passages from Dr. Seuss’ Green Eggs and Ham for 15 minutes, or while singing simple tunes like the “Happy Birthday” song, “Twinkle, Twinkle Little Star” or the “ABCs” for 15 minutes. The scientists tested both aerosols and large droplets in the air samples for coronavirus RNA and calculated how many copies of the virus’s nucleocapsid protein gene, or N gene, were present. That gives an estimate of how much virus is in a sample. Of the 22 patients who sang for science, only 13 spewed forth detectable levels of viral RNA. In general, singing created the most virus-laden aerosols, but some people generated more while talking. Those differences might be attributable to the volume at which volunteers sang, Tham says. “Some people were shy and sang softer. Others were quite uninhibited. The overall amount of virus that people produced varied widely. Scientists already knew that some people are more likely to spread the virus than others, including some people involved in superspreading events (SN:6/18/20). In this new study, the differences weren’t due to symptoms — some asymptomatic people made more virus than those with fevers, coughs or runny noses. Only one factor stood out as affecting the amount of virus emitted. People who were earlier in the course of infection tended to produce more virus, the researchers found. That agrees with data from lab animal studies and other human studies suggesting that people are most contagious in the first week after catching the coronavirus (SN: 3/13/20). So far, Tham’s skeptical virologist friends aren’t convinced that he’s demonstrated that aerosol transmission is the major route of COVID-19 spread. “They say, ‘we need the golden evidence. Show me a live virus that is retrieved from the air,’” Tham says. Viral RNA could be debris from dead viruses that can’t cause infection, says Andrew Pekosz, a virologist at the Johns Hopkins Bloomberg School of Public Health who was not involved in either study. “In the absence of infectious virus, the significance of aerosols on transmission is still a bit unclear.” 1. What was the population being studied? Please describe the population carefully and explain what in the article demonstrates that this is the population. 2. What was the sample of the study? 3. What was the variable being studied in the study?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Mechanical engineer Kwok Wai Tham of the National University of Singapore set out to sample how much virus COVID-19 patients produce when they breathe, talk or sing, in part, to address skeptics’ concerns. “I’m doing this to convince some very close friends,” he says. He and colleagues rolled a mobile lab into 22 patients’ rooms and had volunteers stick their heads into a large metal cone. The researchers collected both aerosols and larger droplets that the patients exhaled while breathing quietly for 30 minutes, while repeating passages from Dr. Seuss’ Green Eggs and Ham for 15 minutes, or while singing simple tunes like the “Happy Birthday” song, “Twinkle, Twinkle Little Star” or the “ABCs” for 15 minutes. The scientists tested both aerosols and large droplets in the air samples for coronavirus RNA and calculated how many copies of the virus’s nucleocapsid protein gene, or N gene, were present. That gives an estimate of how much virus is in a sample.
Of the 22 patients who sang for science, only 13 spewed forth detectable levels of viral RNA. In general, singing created the most virus-laden aerosols, but some people generated more while talking. Those differences might be attributable to the volume at which volunteers sang, Tham says. “Some people were shy and sang softer. Others were quite uninhibited. The overall amount of virus that people produced varied widely. Scientists already knew that some people are more likely to spread the virus than others, including some people involved in superspreading events (SN:6/18/20). In this new study, the differences weren’t due to symptoms — some asymptomatic people made
more virus than those with fevers, coughs or runny noses. Only one factor stood out as affecting the amount of virus emitted. People who were earlier in the course
of infection tended to produce more virus, the researchers found. That agrees with data from lab animal studies and other human studies suggesting that people are most contagious in the first week after catching the coronavirus (SN: 3/13/20). So far, Tham’s skeptical virologist friends aren’t convinced that he’s demonstrated that aerosol transmission is the major route of COVID-19 spread. “They say, ‘we need the golden evidence. Show me a live virus that is retrieved from the air,’” Tham says. Viral RNA could be debris from dead viruses that can’t cause infection, says Andrew Pekosz, a virologist at
the Johns Hopkins Bloomberg School of Public Health who was not involved in either study. “In the absence of infectious virus, the significance of aerosols on transmission is still a bit unclear.”

1. What was the population being studied? Please describe the population carefully and
explain what in the article demonstrates that this is the population.
2. What was the sample of the study?
3. What was the variable being studied in the study?
4. What type of variable is the variable in question #3?
5. What is one sample statistic given in the news article from the study done at the
National University of Singapore?
6. What is the parameter of interest that goes with your answer to #5?

Expert Solution
Step 1

Since you have posted a question with multiple sub-parts, we will solve the first three subparts for you. To get the remaining sub-part solved please repost the complete question and mention the sub-parts to be solved.

 

 

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman