Linear regression aims to fit the parameters based on the training set 6T X= D = {(x(i),y(i)), i = 1,2,..., m} so that the hypothesis function he (x) 00+ 01x1 + 0₂x2 + ...... + Onxn can better predict the output y of a new input vector x. Please derive the stochastic gradient descent update rule which can update repeatedly to minimize the least squares cost function J(0). =
Linear regression aims to fit the parameters based on the training set 6T X= D = {(x(i),y(i)), i = 1,2,..., m} so that the hypothesis function he (x) 00+ 01x1 + 0₂x2 + ...... + Onxn can better predict the output y of a new input vector x. Please derive the stochastic gradient descent update rule which can update repeatedly to minimize the least squares cost function J(0). =
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![**Understanding Linear Regression and Stochastic Gradient Descent**
Linear regression aims to fit the parameters \(\hat{\boldsymbol{\theta}}\) based on the training set:
\[ D = \{ (\vec{x}^{(i)}, y^{(i)}), i = 1, 2, \ldots, m \} \]
The goal is to ensure that the hypothesis function:
\[ h_{\theta}(\vec{x}) = \hat{\boldsymbol{\theta}}^T \cdot \vec{x} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \]
can accurately predict the output \( y \) for a new input vector \(\vec{x}\).
For effective parameter fitting, we derive the stochastic gradient descent update rule. This rule helps in updating \(\hat{\boldsymbol{\theta}}\) iteratively to minimize the least squares cost function \( J(\hat{\boldsymbol{\theta}}) \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff9cf94d2-c54d-41a5-b095-0e143a04d70d%2Ff93b338c-a512-457d-9720-e2c657bbf150%2Fqn5xkf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Understanding Linear Regression and Stochastic Gradient Descent**
Linear regression aims to fit the parameters \(\hat{\boldsymbol{\theta}}\) based on the training set:
\[ D = \{ (\vec{x}^{(i)}, y^{(i)}), i = 1, 2, \ldots, m \} \]
The goal is to ensure that the hypothesis function:
\[ h_{\theta}(\vec{x}) = \hat{\boldsymbol{\theta}}^T \cdot \vec{x} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \]
can accurately predict the output \( y \) for a new input vector \(\vec{x}\).
For effective parameter fitting, we derive the stochastic gradient descent update rule. This rule helps in updating \(\hat{\boldsymbol{\theta}}\) iteratively to minimize the least squares cost function \( J(\hat{\boldsymbol{\theta}}) \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman