appraiser Wa to predi appra houses in a section of the county called East Meadow. One of the many variables thought to be an important predictor of appraised value is the number of rooms in the house. Consequently, the appraiser decided to fit the simple linear regression model: E(y) = Bo + Bix, where y = appraised value of the house (in thousands of dollars) and x = number of rooms. Using data collected for a sample of n = 73 houses in Fast Meadow, the following results were obtained: y = 73.80 + 19.72x What are the properties of the least squares line, y = 73.80 + 19.72x? A) Average error of prediction is 0, and SSE is minimum. B) It will always be a statistically useful predictor of y. C) It is normal, mean 0), constant variance, and independent. D) All 73 of the sample y-values fall on the line.
Correlation
Correlation defines a relationship between two independent variables. It tells the degree to which variables move in relation to each other. When two sets of data are related to each other, there is a correlation between them.
Linear Correlation
A correlation is used to determine the relationships between numerical and categorical variables. In other words, it is an indicator of how things are connected to one another. The correlation analysis is the study of how variables are related.
Regression Analysis
Regression analysis is a statistical method in which it estimates the relationship between a dependent variable and one or more independent variable. In simple terms dependent variable is called as outcome variable and independent variable is called as predictors. Regression analysis is one of the methods to find the trends in data. The independent variable used in Regression analysis is named Predictor variable. It offers data of an associated dependent variable regarding a particular outcome.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps