Lightning produces a maximum air temperature on the order of 104 K, whereas (b) a nuclear explosion produces a temperature on the order of 107 K. Use Wien’s displacement law to find the order of magnitude of the wavelength of the thermally produced photons radiated with greatest intensity by each of these sources. Name the part of the electromagnetic spectrum where you would expect each to radiate most strongly.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
Lightning produces a maximum air temperature on the order of 104 K, whereas (b) a nuclear explosion produces a temperature on the order of 107 K. Use Wien’s displacement law to find the order of magnitude of the wavelength of the thermally produced photons radiated with greatest intensity by each of these sources. Name the part of the
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images