Suppose you measure spectrum of a 40W incandescent light bulb which peaks at a wavelength of 576 nm. Using Wein's displacement law, (eq 1 given above) find the temperature of the source. Using the temperature you found in 1, find the surface area of the 40 W light bulb (use equation 2 assuming ɛ =1 and make a reasonable assumption on temperatures for this calculation. Also, use o = 5.67 x 10*$ W/m²K*).

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Suppose you measure spectrum of a 40W incandescent light bulb which
peaks at a wavelength of 576 nm. Using Wein's displacement law, (eq 1 given
above) find the temperature of the source.
Using the temperature you found in 1, find the surface area of the 40 W
light bulb (use equation 2 assuming ɛ =1 and make a reasonable assumption on
temperatures for this calculation. Also, use o = 5.67 x 108 W/m²K*).
Determine the energies of the following transitions in the hydrogen
atom: n = 5 to n= 2, n= 4 to n= 2, n= 3 to n=2 (Hint: Find the change in
energy using equation (4))
Find the wavelength (in nm) of each transition you found in question
no.3 (Hint: use formula for energy of photon E = hc/h)
Transcribed Image Text:Suppose you measure spectrum of a 40W incandescent light bulb which peaks at a wavelength of 576 nm. Using Wein's displacement law, (eq 1 given above) find the temperature of the source. Using the temperature you found in 1, find the surface area of the 40 W light bulb (use equation 2 assuming ɛ =1 and make a reasonable assumption on temperatures for this calculation. Also, use o = 5.67 x 108 W/m²K*). Determine the energies of the following transitions in the hydrogen atom: n = 5 to n= 2, n= 4 to n= 2, n= 3 to n=2 (Hint: Find the change in energy using equation (4)) Find the wavelength (in nm) of each transition you found in question no.3 (Hint: use formula for energy of photon E = hc/h)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Wien's Displacement law
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON