into one. Taylor's scientific management did away with this by making planning the job of management and production the job of labor. To keep quality from falling through the cracks, it was necessary to create a separate quality depart- ment. Such departments had shaky beginnings, and just who was responsible for quality became a clouded issue. As the volume and complexity of manufacturing grew, quality became an increasingly difficult issue. Volume and complexity together gave birth to quality engineering in the 1920s and reliability engineering in the 1950s. Quality engi- neering, in turn, resulted in the use of statistical methods in the control of quality, which eventually led to the concepts of control charts and statistical process control, which are now fundamental aspects of the total quality approach. Reliability engineering emerged in the 1950s. It began a trend toward moving quality control away from the traditional after-the-fact approach and toward inserting it throughout the design and production processes. However, for the most part, quality control in the 1950s and 1960s involved inspections that resulted in nothing more than cutting out bad parts. World War II had an impact on quality that is still being felt. In general, the effect was negative for the United
into one. Taylor's scientific management did away with this by making planning the job of management and production the job of labor. To keep quality from falling through the cracks, it was necessary to create a separate quality depart- ment. Such departments had shaky beginnings, and just who was responsible for quality became a clouded issue. As the volume and complexity of manufacturing grew, quality became an increasingly difficult issue. Volume and complexity together gave birth to quality engineering in the 1920s and reliability engineering in the 1950s. Quality engi- neering, in turn, resulted in the use of statistical methods in the control of quality, which eventually led to the concepts of control charts and statistical process control, which are now fundamental aspects of the total quality approach. Reliability engineering emerged in the 1950s. It began a trend toward moving quality control away from the traditional after-the-fact approach and toward inserting it throughout the design and production processes. However, for the most part, quality control in the 1950s and 1960s involved inspections that resulted in nothing more than cutting out bad parts. World War II had an impact on quality that is still being felt. In general, the effect was negative for the United
into one. Taylor's scientific management did away with this by making planning the job of management and production the job of labor. To keep quality from falling through the cracks, it was necessary to create a separate quality depart- ment. Such departments had shaky beginnings, and just who was responsible for quality became a clouded issue. As the volume and complexity of manufacturing grew, quality became an increasingly difficult issue. Volume and complexity together gave birth to quality engineering in the 1920s and reliability engineering in the 1950s. Quality engi- neering, in turn, resulted in the use of statistical methods in the control of quality, which eventually led to the concepts of control charts and statistical process control, which are now fundamental aspects of the total quality approach. Reliability engineering emerged in the 1950s. It began a trend toward moving quality control away from the traditional after-the-fact approach and toward inserting it throughout the design and production processes. However, for the most part, quality control in the 1950s and 1960s involved inspections that resulted in nothing more than cutting out bad parts. World War II had an impact on quality that is still being felt. In general, the effect was negative for the United