Infrared spectroscopy is a useful tool for scientists who want to investigate the structure of certain molecules. Which of the following best explains what can occur as the result of a molecule absorbing a photon of infrared radiation? 1. ○ The energies of infrared photons are in the same range as the energies associated with different rotational states of molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of transition between different rotational energy states of the molecules. 2. ◎ The energies of infrared photons are in the same range as the total bond energies of bonds within molecules. Chemical bonds can be completely broken as they absorb infrared photons of characteristic wavelengths, thus revealing the energies of the bonds within the molecules. 3. ○ The energies of infrared photons are in the same range as the energies associated with changes between different electronic energy states in atoms and molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of electronic transitions within the molecules. 4. ○ The energies of infrared photons are in the same range as the energies associated with different vibrational states of chemical bonds. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the types and strengths of different bonds in the molecules.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
100%

how would you answer this question? this is a non graded practice

Infrared spectroscopy is a useful tool for scientists who want to investigate the structure of certain molecules. Which of the following best explains what can occur as the result of a molecule absorbing a photon of infrared radiation?

1. ○ The energies of infrared photons are in the same range as the energies associated with different rotational states of molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of transition between different rotational energy states of the molecules.

2. ◎ The energies of infrared photons are in the same range as the total bond energies of bonds within molecules. Chemical bonds can be completely broken as they absorb infrared photons of characteristic wavelengths, thus revealing the energies of the bonds within the molecules.

3. ○ The energies of infrared photons are in the same range as the energies associated with changes between different electronic energy states in atoms and molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of electronic transitions within the molecules.

4. ○ The energies of infrared photons are in the same range as the energies associated with different vibrational states of chemical bonds. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the types and strengths of different bonds in the molecules.
Transcribed Image Text:Infrared spectroscopy is a useful tool for scientists who want to investigate the structure of certain molecules. Which of the following best explains what can occur as the result of a molecule absorbing a photon of infrared radiation? 1. ○ The energies of infrared photons are in the same range as the energies associated with different rotational states of molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of transition between different rotational energy states of the molecules. 2. ◎ The energies of infrared photons are in the same range as the total bond energies of bonds within molecules. Chemical bonds can be completely broken as they absorb infrared photons of characteristic wavelengths, thus revealing the energies of the bonds within the molecules. 3. ○ The energies of infrared photons are in the same range as the energies associated with changes between different electronic energy states in atoms and molecules. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the energies of electronic transitions within the molecules. 4. ○ The energies of infrared photons are in the same range as the energies associated with different vibrational states of chemical bonds. Molecules can absorb infrared photons of characteristic wavelengths, thus revealing the types and strengths of different bonds in the molecules.
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY