In an aqueous solution of 0.100 M of CH₂BrCOONa and 0.00801 M of S2O3Na2, the following interchange reaction takes place. 2- CH₂BrCOO (aq) + $2032- (aq) -----> CH₂S2O3C00 (aq) + Br(aq) At temperature of 25 ° C, the non-ideal observed rate constant for the reaction is 1.07 M-¹ s-¹. Assuming the following ionic strength equation is valid for this reaction in its aqueous solution, √I 1+√I log10 Knon-ideal = log10 kideal + 2A ZA ZB 26 estimate the values of the rate constant for zero ionic strength.
Catalysis and Enzymatic Reactions
Catalysis is the kind of chemical reaction in which the rate (speed) of a reaction is enhanced by the catalyst which is not consumed during the process of reaction and afterward it is removed when the catalyst is not used to make up the impurity in the product. The enzymatic reaction is the reaction that is catalyzed via enzymes.
Lock And Key Model
The lock-and-key model is used to describe the catalytic enzyme activity, based on the interaction between enzyme and substrate. This model considers the lock as an enzyme and the key as a substrate to explain this model. The concept of how a unique distinct key only can have the access to open a particular lock resembles how the specific substrate can only fit into the particular active site of the enzyme. This is significant in understanding the intermolecular interaction between proteins and plays a vital role in drug interaction.
Step by step
Solved in 3 steps with 1 images