import numpy as npfrom scipy.optimize import minimizeimport matplotlib.pyplot as pltimport pickle #Implement the function regressionObjVal def regressionObjVal(w, X, y):​    # compute squared error (scalar) with respect    # to w (vector) for the given data X and y          #    # Inputs:    # w = d x 1    # X = N x d    # y = N x 1    # Output:    # error = scalar value (which is the error calcualted using objective function)​    # IMPLEMENT THIS METHOD - REMOVE THE NEXT LINE    error = 0​    return error #Implement the function regressionGradient def regressionGradient(w, X, y):​    # compute gradient of squared error (scalar) with respect    # to w (vector) for the given data X and y           # Inputs:    # w = d x 1    # X = N x d    # y = N x 1    # Output:    # gradient = d length vector (not a d x 1 matrix)​    if len(w.shape) == 1:        w = w[:,np.newaxis]    # IMPLEMENT THIS METHOD - REMOVE THE NEXT LINE     error_grad = np.zeros((X.shape[1],))        return error_grad Xtrain,ytrain,Xtest,ytest = pickle.load(open('diabetes.pickle','rb'),encoding='latin1')   # add interceptXtrain_i = np.concatenate((np.ones((Xtrain.shape[0],1)), Xtrain), axis=1)Xtest_i = np.concatenate((np.ones((Xtest.shape[0],1)), Xtest), axis=1)args = (Xtrain_i,ytrain)opts = {'maxiter' : 50}   w_init = np.zeros((Xtrain_i.shape[1],))soln = minimize(regressionObjVal, w_init, jac=regressionGradient, args=args,method='CG', options=opts)w = np.transpose(np.array(soln.x))w = np.reshape(w,[len(w),1])mse = calRegressionError(w,Xtrain_i,ytrain)print('Gradient Descent Linear Regression MSE on train data - %.2f'%mse)mse = calRegressionError(w,Xtest_i,ytest)print('Gradient Descent Linear Regression MSE on test data - %.2f'%mse)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
import pickle

#Implement the function regressionObjVal

def regressionObjVal(w, X, y):

    # compute squared error (scalar) with respect
    # to w (vector) for the given data X and y      
    #
    # Inputs:
    # w = d x 1
    # X = N x d
    # y = N x 1
    # Output:
    # error = scalar value (which is the error calcualted using objective function)

    # IMPLEMENT THIS METHOD - REMOVE THE NEXT LINE
    error = 0

    return error

#Implement the function regressionGradient

def regressionGradient(w, X, y):

    # compute gradient of squared error (scalar) with respect
    # to w (vector) for the given data X and y   
    
    # Inputs:
    # w = d x 1
    # X = N x d
    # y = N x 1
    # Output:
    # gradient = d length vector (not a d x 1 matrix)

    if len(w.shape) == 1:
        w = w[:,np.newaxis]
    # IMPLEMENT THIS METHOD - REMOVE THE NEXT LINE 
    error_grad = np.zeros((X.shape[1],))
    
    return error_grad

Xtrain,ytrain,Xtest,ytest = pickle.load(open('diabetes.pickle','rb'),encoding='latin1')   
# add intercept
Xtrain_i = np.concatenate((np.ones((Xtrain.shape[0],1)), Xtrain), axis=1)
Xtest_i = np.concatenate((np.ones((Xtest.shape[0],1)), Xtest), axis=1)
args = (Xtrain_i,ytrain)
opts = {'maxiter' : 50}   
w_init = np.zeros((Xtrain_i.shape[1],))
soln = minimize(regressionObjVal, w_init, jac=regressionGradient, args=args,method='CG', options=opts)
w = np.transpose(np.array(soln.x))
w = np.reshape(w,[len(w),1])
mse = calRegressionError(w,Xtrain_i,ytrain)
print('Gradient Descent Linear Regression MSE on train data - %.2f'%mse)
mse = calRegressionError(w,Xtest_i,ytest)
print('Gradient Descent Linear Regression MSE on test data - %.2f'%mse)

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fibonacci algorithm
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education