Type in Latex **Problem**. Let $$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}.$$ This matrix is an example of a **stochastic matrix**: its column sums are all equal to 1. The vectors $$\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1\end{bmatrix}$$ are all eigenvectors of $A$. * Compute $\left[\begin{array}{rrr} 1 & 1 & 1 \end{array}\right]\cdot\mathbf{x}_0$ and deduce that $c_1 = 1$. * Finally, let $\mathbf{x}_k = A^k \mathbf{x}_0$.  Show that $\mathbf{x}_k \longrightarrow \mathbf{v}_1$ as $k$ goes to infinity.  (The vector $\mathbf{v}_1$ is called a **steady-state vector** for $A.$)   **Solution**.    To prove that $c_1 = 1$, we first left-multiply both sides of the above equation by $[1 \, 1\, 1]$ and then simplify both sides: $$ \begin{aligned} [1 \, 1\, 1]\mathbf{x}_0 &= [1 \, 1\, 1](c_1\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3\mathbf{v}_3) \\ &= [1 \, 1\, 1] \\ &= \\ \end{aligned} $$

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Type in Latex

**Problem**. Let $$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}.$$ This matrix is an example of a **stochastic matrix**: its column sums are all equal to 1. The vectors $$\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1\end{bmatrix}$$ are all eigenvectors of $A$.

* Compute $\left[\begin{array}{rrr} 1 & 1 & 1 \end{array}\right]\cdot\mathbf{x}_0$ and deduce that $c_1 = 1$.
* Finally, let $\mathbf{x}_k = A^k \mathbf{x}_0$.  Show that $\mathbf{x}_k \longrightarrow \mathbf{v}_1$ as $k$ goes to infinity.  (The vector $\mathbf{v}_1$ is called a **steady-state vector** for $A.$)

 

**Solution**. 

 

To prove that $c_1 = 1$, we first left-multiply both sides of the above equation by $[1 \, 1\, 1]$ and then simplify both sides:
$$
\begin{aligned}
[1 \, 1\, 1]\mathbf{x}_0 &= [1 \, 1\, 1](c_1\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3\mathbf{v}_3) \\
&= [1 \, 1\, 1] \\
&= \\
\end{aligned}
$$

 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Topological Sort
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education