Type in Latex **Problem**. Let $$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}.$$ This matrix is an example of a **stochastic matrix**: its column sums are all equal to 1. The vectors $$\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1\end{bmatrix}$$ are all eigenvectors of $A$. * Compute $\left[\begin{array}{rrr} 1 & 1 & 1 \end{array}\right]\cdot\mathbf{x}_0$ and deduce that $c_1 = 1$. * Finally, let $\mathbf{x}_k = A^k \mathbf{x}_0$. Show that $\mathbf{x}_k \longrightarrow \mathbf{v}_1$ as $k$ goes to infinity. (The vector $\mathbf{v}_1$ is called a **steady-state vector** for $A.$) **Solution**. To prove that $c_1 = 1$, we first left-multiply both sides of the above equation by $[1 \, 1\, 1]$ and then simplify both sides: $$ \begin{aligned} [1 \, 1\, 1]\mathbf{x}_0 &= [1 \, 1\, 1](c_1\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3\mathbf{v}_3) \\ &= [1 \, 1\, 1] \\ &= \\ \end{aligned} $$
Type in Latex
**Problem**. Let $$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}.$$ This matrix is an example of a **stochastic matrix**: its column sums are all equal to 1. The
* Compute $\left[\begin{array}{rrr} 1 & 1 & 1 \end{array}\right]\cdot\mathbf{x}_0$ and deduce that $c_1 = 1$.
* Finally, let $\mathbf{x}_k = A^k \mathbf{x}_0$. Show that $\mathbf{x}_k \longrightarrow \mathbf{v}_1$ as $k$ goes to infinity. (The vector $\mathbf{v}_1$ is called a **steady-state vector** for $A.$)
**Solution**.
To prove that $c_1 = 1$, we first left-multiply both sides of the above equation by $[1 \, 1\, 1]$ and then simplify both sides:
$$
\begin{aligned}
[1 \, 1\, 1]\mathbf{x}_0 &= [1 \, 1\, 1](c_1\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3\mathbf{v}_3) \\
&= [1 \, 1\, 1] \\
&= \\
\end{aligned}
$$
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)