If a student attends every business analytics class, the probability of passing the course is 0.90; but if the student only attends randomly, then the probability of passing the course is 0.30. If a student fails, he or she can take a makeup exam where the probability of passing is 0.60 if the student has attended every class. This probability of passing the makeup exam drops to 0.20 if the student has attended at random. Passing the course is worth 5 credits. Full-time attendance "costs" 3 credits in terms of energy and time, whereas random attendance "costs" only 1 credit. Draw a decision tree and use the decision tree to decide which is the best attendance pattern to adopt. Assume that all failing students take the makeup exam and that the payoff for failing is equal to 0 credit. Draw a decision tree and determine the payoff for each decision and event node. Which alternative should the student choose?
If a student attends every business analytics class, the probability of passing the course is 0.90; but if the student only attends randomly, then the probability of passing the course is 0.30. If a student fails, he or she can take a makeup exam where the probability of passing is 0.60 if the student has attended every class. This probability of passing the makeup exam drops to 0.20 if the student has attended at random. Passing the course is worth 5 credits. Full-time attendance "costs" 3 credits in terms of energy and time, whereas random attendance "costs" only 1 credit.
Draw a decision tree and use the decision tree to decide which is the best attendance pattern to adopt. Assume that all failing students take the makeup exam and that the payoff for failing is equal to 0 credit.
Draw a decision tree and determine the payoff for each decision and event node.
Which alternative should the student choose?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images