ICG Heterogeneous Catalysis Performance P10-3 t-Butyl alcohol (TBA) is an important octane enhancer that is used to replace lead additives in gasoline [Ind. Eng. Chem. Res., 27, 2224 (1988)]. TBA was produced by the liquid-phase hydration (W) of isobutene (I) over an Amberlyst-15 catalyst. The system is normally a multiphase mixture of hydrocar- bon, water, and solid catalysts. However, the use of cosolvents or excess TBA can achieve reasonable miscibility. The reaction mechanism is believed to be Derive a rate law assuming: I S (P10-3.1) I+S W.S (P10-3.2) WSZ W S+I SE TBA S+S (P10-3.3) TBA SZ TBA + S (P10-3.4) (a) The surface reaction is rate-limiting. (b) The adsorption of isobutene is limiting. (c) The reaction follows Eley-Rideal kinetics I SW TBA S (P10-3.5) and the surface reaction is limiting. (d) Isobutene (1) and water (W) are adsorbed on different sites. T + S₁ W + S₂ W. S₂ TBA is not on the surface, and the surface reaction is rate-limiting. Ans.: TBA=-= [CCW-CTBA/K] (1+KwCw) (1+KC) (P10-3.6) (P10-3.7) (e) What generalization can you make by comparing the rate laws derived in parts (a) through (d)?
ICG Heterogeneous Catalysis Performance P10-3 t-Butyl alcohol (TBA) is an important octane enhancer that is used to replace lead additives in gasoline [Ind. Eng. Chem. Res., 27, 2224 (1988)]. TBA was produced by the liquid-phase hydration (W) of isobutene (I) over an Amberlyst-15 catalyst. The system is normally a multiphase mixture of hydrocar- bon, water, and solid catalysts. However, the use of cosolvents or excess TBA can achieve reasonable miscibility. The reaction mechanism is believed to be Derive a rate law assuming: I S (P10-3.1) I+S W.S (P10-3.2) WSZ W S+I SE TBA S+S (P10-3.3) TBA SZ TBA + S (P10-3.4) (a) The surface reaction is rate-limiting. (b) The adsorption of isobutene is limiting. (c) The reaction follows Eley-Rideal kinetics I SW TBA S (P10-3.5) and the surface reaction is limiting. (d) Isobutene (1) and water (W) are adsorbed on different sites. T + S₁ W + S₂ W. S₂ TBA is not on the surface, and the surface reaction is rate-limiting. Ans.: TBA=-= [CCW-CTBA/K] (1+KwCw) (1+KC) (P10-3.6) (P10-3.7) (e) What generalization can you make by comparing the rate laws derived in parts (a) through (d)?
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The