I am trying to convert orbital elements to the state vector in MATLAB. My orbital elements are as follows a = 6731; ecc = 0.01; inc = 142.461; raan = 155.9325; argp = 321.0439; f = 145.8291; After transforming them I get : x = 3898.6; y = 3898.6; z = 3957; vx = 5.9771; vy = -4.5575; vz = -1.3245; I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?
I am trying to convert orbital elements to the state vector in MATLAB. My orbital elements are as follows a = 6731; ecc = 0.01; inc = 142.461; raan = 155.9325; argp = 321.0439; f = 145.8291; After transforming them I get : x = 3898.6; y = 3898.6; z = 3957; vx = 5.9771; vy = -4.5575; vz = -1.3245; I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
I am trying to convert orbital elements to the state
a = 6731;
ecc = 0.01;
inc = 142.461;
raan = 155.9325;
argp = 321.0439;
f = 145.8291;
After transforming them I get :
x = 3898.6;
y = 3898.6;
z = 3957;
vx = 5.9771;
vy = -4.5575;
vz = -1.3245;
I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY