heritance from this Binary Tree how would I construct a Red Black Tree's "Remove" function in Java? I know I need to overload the operator but not sure what to do from there... public class BinNode { private String data; private BinNode left; private BinNode right; public BinNode(){ data = ""; left = null; right = null;
Using Inheritance from this Binary Tree how would I construct a Red Black Tree's "Remove" function in Java?
I know I need to overload the operator but not sure what to do from there...
public class BinNode
{
private String data;
private BinNode left;
private BinNode right;
public BinNode(){
data = "";
left = null;
right = null;
}
public BinNode(String d){
data = d;
left = null;
right = null;
}
public void setData(String d){
this.data = d;
}
public String getData(){
return this.data;
}
public void setLeft(BinNode l){
this.left = l;
}
public BinNode getLeft(){
return this.left;
}
public void setRight(BinNode r){
this.right = r;
}
public BinNode getRight(){
return this.right;
}
}
public class BinaryTree
{
private BinNode root;
private BinNode curr;
/* Function to traverse right */
public void goRight() {
this.curr = this.curr.getRight();
}
public BinaryTree()
{
root = new BinNode();
curr = new BinNode();
}
public BinNode getRoot(){
return this.root;
}
/* Function to check if tree is empty */
public boolean isEmpty()
{
return this.root == null;
}
/* Functions to insert data */
public void insert(String data)
{
this.root = insert(this.root, data);
} //done
/* Function to insert data recursively */
private BinNode insert(BinNode node, String data)
{
if (node == null)
node = new BinNode(data);
else
{
int i = node.getData().compareTo(data);
if (i < 0) {
// Go right
node.setRight(insert(node.getRight(), data));
} else if (i >= 0) {
// Go left
node.setLeft(insert(node.getLeft(), data));
}
// write this!
}
return node;
}
/* Function to count number of nodes */
public int countNodes()
{
return countNodes(this.root);
}
/* Function to count number of nodes recursively */
private int countNodes(BinNode r)
{
if (r == null) {
return 0; // If the current node is null, there are no nodes to count.
}
int leftCount = countNodes(r.getLeft()); // Count nodes in the left subtree
int rightCount = countNodes(r.getRight()); // Count nodes in the right subtree
// Add 1 to count the current node itself
return 1 + leftCount + rightCount;
}
/* Function to search for an element */
public BinNode search(String val)
{
return search(this.root, val);
}
/* Function to search for an element recursively */
private BinNode search(BinNode r, String val)
{
// Base case: If the current node is null, the value is not found.
if (r == null) {
return null;
}
int comparison = val.compareTo(r.getData());
if (comparison < 0) {
// Value is smaller, so search in the left subtree.
return search(r.getLeft(), val);
} else if (comparison > 0) {
// Value is larger, so search in the right subtree.
return search(r.getRight(), val);
} else {
// Value is equal to the current node's data, so it's found.
//this.curr = r;
return r;
}
}
/* Function for inorder traversal */
public void inorder()
{
inorder(this.root);
}
private void inorder(BinNode r)
{
if (r != null)
{
inorder(r.getLeft());
System.out.print(r.getData() +" ");
inorder(r.getRight());
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(BinNode r)
{
if (r != null)
{
System.out.print(r.getData() +" ");
preorder(r.getLeft());
preorder(r.getRight());
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(BinNode r)
{
if (r != null)
{
postorder(r.getLeft());
postorder(r.getRight());
System.out.print(r.getData() +" ");
}
}
// find the in-order successor of a given node
public BinNode findInorderSuccessor(BinNode node) {
BinNode current = node.getRight();
while (current.getLeft() != null) {
current = current.getLeft();
}
return current;
}
//Remove function
public void remove(String key) {
// Find the node to be removed and its parent
BinNode parent = null;
BinNode n = this.root;
while (n != null && !n.getData().equals(key)) {
parent = n;
if (key.compareTo(n.getData()) < 0) {
n = n.getLeft();
} else {
n = n.getRight();
}
}
if (n == null) {
// Key not found, nothing to remove
return;
}
// Case 1: Node with no children
if (n.getLeft() == null && n.getRight() == null) {
if (parent == null) {
// Removing the root node
this.root = null;
} else if (parent.getLeft() == n) {
parent.setLeft(null);
} else {
parent.setRight(null);
}
}
// Case 2: Node with one child
else if (n.getLeft() == null || n.getRight() == null) {
BinNode child = (n.getLeft() != null) ? n.getLeft() : n.getRight();
if (n == this.root) {
this.root = child;
} else if (parent.getLeft() == n) {
parent.setLeft(child);
} else {
parent.setRight(child);
}
}
// Case 3: Node with two children
else {
BinNode successor = findInorderSuccessor(n);
n.setData(successor.getData());
remove(successor.getData()); // Recursively remove the successor
}
}
}
Transitioning from a basic Binary Tree to a Red-Black Tree (RBT) is like jumping from undergraduate studies straight into a postgraduate program. It's challenging, but entirely worthwhile. Red-Black Trees are self-balancing binary search trees, where each node has an additional bit for denoting the color of the node, either red or black. The core principle behind the operations of a Red-Black Tree (insertion, deletion, etc.) is to ensure the tree remains balanced, and no path from the root to any leaf is more than twice as long as any other.
For your endeavor, you're looking to implement the remove
function for a Red-Black Tree, inheriting properties from a Binary Tree. This is one of the most intricate operations for Red-Black Trees, given the balancing act (pun intended!) that has to occur after a node is removed.
Step by step
Solved in 3 steps