For motion in a plane with the Hamiltonian H = |p|n − a r−n, where p is the vector of the momenta conjugate to the Cartesian coordinates, show that there is a constant of the motion D = (p . r) / n − H t.
Q: For a one-dimensional system with the Hamiltonian H = p2/2 − 1 / (2 q2), show that there is a…
A: Given that,H=p22-12q2D= pq2-HtWe have Liouville's theorem which is,dFdt = ∂F∂t+F, HHere F = DSo in…
Q: A particle of mass m described by one generalized coordinate q moves under the influence of a…
A:
Q: A disk of mass m of radius R is mounted on a swivel joint L from the center of gravity as shown…
A:
Q: (c) The motion of a particle in a plane is governed by the Lagrangian (a² + ÿ²) + ¿(y& – xỷ). L =…
A:
Q: A ball moves freely on the surface of a round billiard table, and undergoes elastic reflections at…
A:
Q: Consider a bead of mass m on a circular wire of radius R. Assume a force kx acts on the bead, where…
A:
Q: Verify that the Hamiltonian equation H(x, p, t) = T + V = p2/2m + (k/2) (x − v0t)2 leads to the same…
A: The Hamilton’s equations of motion are ∂H∂p=x˙, and ∂H∂x=-p˙ From Newton's second law p˙=mx¨
Q: A particle of mass m is moving along the x axis. The potential energy of the particle is given by…
A:
Q: Prove that the relation ∂ri/∂qk =∂r˙i/∂q˙k holds if you have one particle system described by…
A:
Q: Consider the points A(−4, 2, 0), B(7,3,−2) and C(−2, −3,1) (a) Find a vector of length √6 in the…
A: Given points A(-4,2,0), B(7,3,-2) and C(-2,-3,1) AB→=7-(-4)i^+3-2j^+-2+0k^AB→=11i^+1j^-2k^…
Q: A particle of mass m is suspended from a support by a light string of length which passes through a…
A:
Q: Consider the following stress distribution [aX2 B 07 O = 0. where a and B are constants. (a)…
A: The stress distribution is as Now by comparing it with standard Matrix = Hence
Q: A particle of mass m slides under the gravity without friction along the parabolic path y = a x²…
A: Introduction: Lagrangian is a quantity that describes a physical system's state. Just the kinetic…
Q: 25. (a) The Hamiltonian for a system has the form H 1 = 1/2 ( 72²2 + P²³²₁^²) . Find the equation of…
A: (a) The Hamiltonian for a system has the form H = 1/2 (1/q2+ p2q4). Find the equation of motion for…
Q: Problem 2: A fisherman has caught a fish on his pole, and to keep the pole steady he has to apply…
A: Consider the Figure shown below.
Q: The time-evolution of a physical system with one coordinate q is described by the La- grangian L = ?…
A: **as per our company guidelines we are supposed to answer only first 3 sub-parts. Kindly repost…
Q: A small bead of mass m=1g moves without friction along the inner surface of a deep spherical cup,…
A:
Q: Consider a large solar sail in the form of a square with sides of length e = 100 m that is…
A: Light is nothing but excitation of the electric and the magnetic field in space. It also behaves as…
Q: Consider the Lagrangian for a bead on a rotating horizontal wire: L = m/2 ( ̇q2 + ω2q2). (a) What is…
A: The specified Lagrangian is: L=12mq˙2+ω2q2 Lagrangian field theory is a classical field theory…
Q: Consider the spherical pendulum, which consists of a mass m suspended by a string from the ceiling.…
A:
Q: (a) For one-dimensional motion of a particle of mass m acted upon by a force F(x), obtain the formal…
A:
Q: If the kinetic energy T and the potential energy V of a mathematical system are given T = (k+;) i +…
A: The Lagrangian function is given by, L = T - V The Hamiltonian function is given by, Hq, p, t =…
Q: Consider a vector Q that rotates at angular frequency ω about some fixed axis of rotation (~ω).…
A:
For motion in a plane with the Hamiltonian
H = |p|n − a r−n,
where p is the vector of the momenta conjugate to the Cartesian coordinates,
show that there is a constant of the motion
D = (p . r) / n − H t.
Given:
The Hamiltonian of the motion in a plane is
The operator
Step by step
Solved in 4 steps with 7 images
- (a) For one-dimensional motion of a particle of mass m acted upon by a force F(x), obtain the formal solution to the trajectory x(t) in the inverse form: m = ₂√ 2 {E – V(x)} where V (x) is the potential energy and x0 is the position at t = 0. (b) If the force, F(x) is a constant then what is the equation of the particles trajectory (x vs t). t(x): = dxExpress the Lagrangian for a free particle moving in a plane in a plane polar coordinates. From this proves that, in terms of radial and tangential components, the acceleration inpolar coordinates isa = (¨r − rθ˙2) er + (rθ¨ + 2 r˙ θ˙) eθ(where er and eθ are unit vectors in the positive radial and tangential directions).A particle of mass m described by one generalized coordinate q movesunder the influence of a potential V(q) and a damping force −2mγq˙ proportional to its velocity with the Lagrangian L = e2γt(1/2 * mq˙2 − V (q)) which gives the desired equation of motion. (a) Consider the following generating function: F = eγtqP - QP.Obtain the canonical transformation from (q,p) to (Q,P) and the transformed Hamiltonian K(Q,P,t). (b) Let V (q) = (1/2)mω2q2 be a harmonic potential with a natural frequency ω and note that the transformed Hamiltonian yields a constant of motion. Obtain the solution Q(t) for the damped oscillator in the under damped case γ < ω by solving Hamilton's equations in the transformed coordinates. Then, write down the solution q(t) using the canonical coordinates obtained in part (a).
- In a Hamiltonian system, what are the conditions for fixed points?Consider a particle of mass m undergoing simple harmonic motion. The force on the particle is given by Hooke's law F(x)=-kx. Determine the equation of motion by using the Euler-Lagrange equation.Let G(u, v) = (3u + v, u - 2v). Use the Jacobian to determine the area of G(R) for: (a) R = [0, 3] x [0, 5] (b) R = [2, 5] x [1, 7]
- A block of mass m = 240 kg rests against a spring with a spring constant of k = 550 N/m on an inclined plane which makes an angle of θ degrees with the horizontal. Assume the spring has been compressed a distance d from its neutral position. Refer to the figure. (a) Set your coordinates to have the x-axis along the surface of the plane, with up the plane as positive, and the y-axis normal to the plane, with out of the plane as positive. Enter an expression for the normal force, FN, that the plane exerts on the block (in the y-direction) in terms of defined quantities and g. (b) Denoting the coefficient of static friction by μs, write an expression for the sum of the forces in the x-direction just before the block begins to slide up the inclined plane. Use defined quantities and g in your expression. (c) Assuming the plane is frictionless, what will the angle of the plane be, in degrees, if the spring is compressed by gravity a distance 0.1 m? (d) Assuming θ = 45 degrees and the…(a) What does the quadrupole formula (P) = = = (Qij Q³ ³) compute? Reason the answer. (b) A point mass m undergoes a harmonic motion along the z-axis with frequency w and amplitude L, x(t) = y(t) = 0, z(t) = L cos(wt). Show that the only non-vanishing component of the quadrupole moment tensor is = Im L² cos² (wt). (c) Use the quadrupole formula to compute the power radiated by the emission of gravitational waves. (Hint: recall that (cos(t)) = (sin(t)) = 0 and (cos² (t)) = (sin² (t)) = ½½ for a given frequency 2.)