FIGURE 9-12 Key sites of interaction in a ribosome in the elongation phase of translation. (a) A computer model of the three-dimensional structure of the ribosome including MRNA, tRNAS, and the nascent polypeptide chain as it emerges from the large ribosomal subunit. (b) A schematic model of the ribosome during translation elongation. See text for details. [(a) J. Frank, Cryo-electron microscopy as an investigative tool the nibosome as an example, BioEssays 23, 2001, 725-732, Key sites of interaction in the ribosome (a) Computer model Polypeptide Figure 2. O Reproduced with permission of John Wiley & Sons, Inc. 50S positioned in the ribosome so that the codon of the MRNA can interact with the anticodon of the tRNA. The key sites of inter- action are illustrated in Figure 9-12. The binding site for MRNA is completely within the small subunit. There are three bind- ing sites for tRNA molecules. Each bound (RNA bridges the 30S and 50S subunits, positioned with its anticodon end in the former and its anminoacyl end (carrying the amino acid) in the latter. The A site (for aminoacyl) binds an incoming ami- noacyl-tRNA whose anticodon matches the codon in the A site of the 30S subunit. As we proceed in the 5' direction on the mRNA, the next codon interacts with the anticodon of the tRNA in the P site (for peptidyl) of the 30S subunit. The tRNA in the P site binds the growing peptide chain, part of which fits into a tunnel-like structure in the 50S subunit. The E site (for exit) contains a deacylated tRNA (it no longer car- ries an amino acid) that is ready to be released from the ribo- some. Whether codon-anticodon interactions also take place between the mRNA and the tRNA in the E site is not clear. Two additional regions in the ribosome are critical for pro- tein synthesis. The decoding center in the 30S subunit en- sures that only tRNAs carrying anticodons that match the codon (called cognate tRNAs) will be accepted into the A site. The peptidyltransferase center in the 50S subunit is the site where peptide-bond formation is catalyzed. Recently, many laboratories, especially those of Thomas Steitz, Venkatraman Ramakrishnan, and Ada Yonath, have used X-ray crystallogra- phy to “solve" the structure of the ribosome at the atomic level. For this accomplishment these three scientists received the 30S 5' MRNA 3' b) Schematic model - NH, Growing polypeptide chain Deacylated TRNA released from E site Peptidyl- transferase center Decoding center Movement of ribosome Nohel Prize in Chemistry in 2009 The results of their elegant studies clearly show

Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
icon
Related questions
Topic Video
Question

In Figure 9-12, is the terminal amino acid emerging from
the ribosome encoded by the 5′
or 3′
end of the mRNA?

FIGURE 9-12 Key sites of interaction in a ribosome in the elongation
phase of translation. (a) A computer model of the three-dimensional
structure of the ribosome including MRNA, tRNAS, and the nascent
polypeptide chain as it emerges from the large ribosomal subunit.
(b) A schematic model of the ribosome during translation elongation.
See text for details. [(a) J. Frank, Cryo-electron microscopy as an
investigative tool the nibosome as an example, BioEssays 23, 2001, 725-732,
Key sites of interaction in the ribosome
(a) Computer model
Polypeptide
Figure 2. O Reproduced with permission of John Wiley & Sons, Inc.
50S
positioned in the ribosome so that the codon of the MRNA can
interact with the anticodon of the tRNA. The key sites of inter-
action are illustrated in Figure 9-12. The binding site for MRNA
is completely within the small subunit. There are three bind-
ing sites for tRNA molecules. Each bound (RNA bridges the
30S and 50S subunits, positioned with its anticodon end in
the former and its anminoacyl end (carrying the amino acid) in
the latter. The A site (for aminoacyl) binds an incoming ami-
noacyl-tRNA whose anticodon matches the codon in the A
site of the 30S subunit. As we proceed in the 5' direction on
the mRNA, the next codon interacts with the anticodon of the
tRNA in the P site (for peptidyl) of the 30S subunit. The
tRNA in the P site binds the growing peptide chain, part of
which fits into a tunnel-like structure in the 50S subunit. The
E site (for exit) contains a deacylated tRNA (it no longer car-
ries an amino acid) that is ready to be released from the ribo-
some. Whether codon-anticodon interactions also take place
between the mRNA and the tRNA in the E site is not clear.
Two additional regions in the ribosome are critical for pro-
tein synthesis. The decoding center in the 30S subunit en-
sures that only tRNAs carrying anticodons that match the
codon (called cognate tRNAs) will be accepted into the A site.
The peptidyltransferase center in the 50S subunit is the site
where peptide-bond formation is catalyzed. Recently, many
laboratories, especially those of Thomas Steitz, Venkatraman
Ramakrishnan, and Ada Yonath, have used X-ray crystallogra-
phy to “solve" the structure of the ribosome at the atomic level.
For this accomplishment these three scientists received the
30S
5'
MRNA
3'
b) Schematic model
- NH,
Growing
polypeptide chain
Deacylated
TRNA released
from E site
Peptidyl-
transferase center
Decoding center
Movement of ribosome
Nohel Prize in Chemistry in 2009 The results of their elegant studies clearly show
Transcribed Image Text:FIGURE 9-12 Key sites of interaction in a ribosome in the elongation phase of translation. (a) A computer model of the three-dimensional structure of the ribosome including MRNA, tRNAS, and the nascent polypeptide chain as it emerges from the large ribosomal subunit. (b) A schematic model of the ribosome during translation elongation. See text for details. [(a) J. Frank, Cryo-electron microscopy as an investigative tool the nibosome as an example, BioEssays 23, 2001, 725-732, Key sites of interaction in the ribosome (a) Computer model Polypeptide Figure 2. O Reproduced with permission of John Wiley & Sons, Inc. 50S positioned in the ribosome so that the codon of the MRNA can interact with the anticodon of the tRNA. The key sites of inter- action are illustrated in Figure 9-12. The binding site for MRNA is completely within the small subunit. There are three bind- ing sites for tRNA molecules. Each bound (RNA bridges the 30S and 50S subunits, positioned with its anticodon end in the former and its anminoacyl end (carrying the amino acid) in the latter. The A site (for aminoacyl) binds an incoming ami- noacyl-tRNA whose anticodon matches the codon in the A site of the 30S subunit. As we proceed in the 5' direction on the mRNA, the next codon interacts with the anticodon of the tRNA in the P site (for peptidyl) of the 30S subunit. The tRNA in the P site binds the growing peptide chain, part of which fits into a tunnel-like structure in the 50S subunit. The E site (for exit) contains a deacylated tRNA (it no longer car- ries an amino acid) that is ready to be released from the ribo- some. Whether codon-anticodon interactions also take place between the mRNA and the tRNA in the E site is not clear. Two additional regions in the ribosome are critical for pro- tein synthesis. The decoding center in the 30S subunit en- sures that only tRNAs carrying anticodons that match the codon (called cognate tRNAs) will be accepted into the A site. The peptidyltransferase center in the 50S subunit is the site where peptide-bond formation is catalyzed. Recently, many laboratories, especially those of Thomas Steitz, Venkatraman Ramakrishnan, and Ada Yonath, have used X-ray crystallogra- phy to “solve" the structure of the ribosome at the atomic level. For this accomplishment these three scientists received the 30S 5' MRNA 3' b) Schematic model - NH, Growing polypeptide chain Deacylated TRNA released from E site Peptidyl- transferase center Decoding center Movement of ribosome Nohel Prize in Chemistry in 2009 The results of their elegant studies clearly show
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Gene expression
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education