Pre-practical "MUST DO" to be included in your lab-book: 1. Calculate MW of all compounds listed in the experiments, moles and theoretical yield 2. Reaction mechanism 3. What is the role of triethylamine? 4. What is the function of the ethyl ester and tert-butoxycarbonyl groups during the synthesis? 5. Look up ninhydrin and briefly describe how it works 6. Predict the fragmentation pattern and masses of the dipeptide product EXPERIMENTAL: 1. Weigh out glycine ethyl ester hydrochloride (0.37 g, ## mmol) and dissolve in dichloromethane (15 mL) in a round bottom flask. 2. Add triethylamine (1.5 mL, ### mmol) to this solution. Then add N-(tert-butoxycarbonyl)-L- alanine (0.5 g, #mmol) followed by EDCI (0.5 g, # mmol). Connect a reflux condenser to your flask and heat the mixture to reflux on a heating block for 30 mins. 3. Cool the reaction mixture and add dichloromethane (10 mL). Transfer to a separating funnel. 4. Wash with 2M HCI (20 mL), then NaHCO3 solution (2 x 15 mL) [Caution: will generate allow CO2 in contact with acid, ensure to vent separating funnel], and brine (20 mL), dry (Na2SO4) and filter. 5. Analyse the product mixture by TLC to determine the purity (cyclohexane:ethyl acetate 1:2) you can detect the products on the TLC plate using the ninhydrin stain provided. The product has an R+ of ~0.5. Also run a TLC plate spotted with the starting materials glycine ethyl ester, N-Boc-L-alanine, and the product mixture, stain and compare R values. Describe your observations. 6. Remove the solvent by rotary evaporator. The product is obtained as an oil. Calculate a yield. Experiment 3: SYNTHESIS OF A DIPEPTIDE Learning outcomes: 1. Reflux 2. Track product through extraction in separatory funnel 3. TLC, ninhydrin as staining Background The synthesis of peptides is important for studies of their structure and for biological studies. The technique of solid phase peptide synthesis was developed by Merrifield and is used widely for synthesis of peptides containing up to 60 amino acids. You will carry out a solution phase synthesis of a dipeptide. The key reaction involves formation of the peptide bond by coupling the amino group of glycine to the carboxylic acid group of L-alanine. The reaction involves the addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) B to a solution containing the 'protected' alanine A; this leads to in situ formation of a mixed anhydride C which then undergoes reaction with the nucleophile D to give the dipeptide product E. R₁ ཨོ རིཡཱསུ ΝΗ с N-R OH R N=C=N-R₁ B H₂N. D E

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Can someone draw a reaction mechanism of this reaction please I was told that the boc l alanine is deprotonated first and acts as the nucleophile attacking the EDCL and can you please show all the intermediates and side products and the water at the end

Pre-practical "MUST DO" to be included in your lab-book:
1. Calculate MW of all compounds listed in the experiments, moles and theoretical yield
2. Reaction mechanism
3. What is the role of triethylamine?
4. What is the function of the ethyl ester and tert-butoxycarbonyl groups during the
synthesis?
5. Look up ninhydrin and briefly describe how it works
6. Predict the fragmentation pattern and masses of the dipeptide product
EXPERIMENTAL:
1. Weigh out glycine ethyl ester hydrochloride (0.37 g, ## mmol) and dissolve in
dichloromethane (15 mL) in a round bottom flask.
2. Add triethylamine (1.5 mL, ### mmol) to this solution. Then add N-(tert-butoxycarbonyl)-L-
alanine (0.5 g, #mmol) followed by EDCI (0.5 g, # mmol). Connect a reflux condenser to your
flask and heat the mixture to reflux on a heating block for 30 mins.
3. Cool the reaction mixture and add dichloromethane (10 mL). Transfer to a separating funnel.
4. Wash with 2M HCI (20 mL), then NaHCO3 solution (2 x 15 mL) [Caution: will generate allow
CO2 in contact with acid, ensure to vent separating funnel], and brine (20 mL), dry (Na2SO4)
and filter.
5. Analyse the product mixture by TLC to determine the purity (cyclohexane:ethyl acetate 1:2)
you can detect the products on the TLC plate using the ninhydrin stain provided. The product
has an R+ of ~0.5. Also run a TLC plate spotted with the starting materials glycine ethyl ester,
N-Boc-L-alanine, and the product mixture, stain and compare R values. Describe your
observations.
6. Remove the solvent by rotary evaporator. The product is obtained as an oil. Calculate a yield.
Transcribed Image Text:Pre-practical "MUST DO" to be included in your lab-book: 1. Calculate MW of all compounds listed in the experiments, moles and theoretical yield 2. Reaction mechanism 3. What is the role of triethylamine? 4. What is the function of the ethyl ester and tert-butoxycarbonyl groups during the synthesis? 5. Look up ninhydrin and briefly describe how it works 6. Predict the fragmentation pattern and masses of the dipeptide product EXPERIMENTAL: 1. Weigh out glycine ethyl ester hydrochloride (0.37 g, ## mmol) and dissolve in dichloromethane (15 mL) in a round bottom flask. 2. Add triethylamine (1.5 mL, ### mmol) to this solution. Then add N-(tert-butoxycarbonyl)-L- alanine (0.5 g, #mmol) followed by EDCI (0.5 g, # mmol). Connect a reflux condenser to your flask and heat the mixture to reflux on a heating block for 30 mins. 3. Cool the reaction mixture and add dichloromethane (10 mL). Transfer to a separating funnel. 4. Wash with 2M HCI (20 mL), then NaHCO3 solution (2 x 15 mL) [Caution: will generate allow CO2 in contact with acid, ensure to vent separating funnel], and brine (20 mL), dry (Na2SO4) and filter. 5. Analyse the product mixture by TLC to determine the purity (cyclohexane:ethyl acetate 1:2) you can detect the products on the TLC plate using the ninhydrin stain provided. The product has an R+ of ~0.5. Also run a TLC plate spotted with the starting materials glycine ethyl ester, N-Boc-L-alanine, and the product mixture, stain and compare R values. Describe your observations. 6. Remove the solvent by rotary evaporator. The product is obtained as an oil. Calculate a yield.
Experiment 3:
SYNTHESIS OF A DIPEPTIDE
Learning outcomes:
1. Reflux
2. Track product through extraction in separatory funnel
3. TLC, ninhydrin as staining
Background
The synthesis of peptides is important for studies of their structure and for biological studies.
The technique of solid phase peptide synthesis was developed by Merrifield and is used widely
for synthesis of peptides containing up to 60 amino acids. You will carry out a solution phase
synthesis of a dipeptide. The key reaction involves formation of the peptide bond by coupling
the amino group of glycine to the carboxylic acid group of L-alanine. The reaction involves the
addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) B to a solution
containing the 'protected' alanine A; this leads to in situ formation of a mixed anhydride C which
then undergoes reaction with the nucleophile D to give the dipeptide product E.
R₁
ཨོ རིཡཱསུ
ΝΗ
с
N-R
OH
R
N=C=N-R₁
B
H₂N.
D
E
Transcribed Image Text:Experiment 3: SYNTHESIS OF A DIPEPTIDE Learning outcomes: 1. Reflux 2. Track product through extraction in separatory funnel 3. TLC, ninhydrin as staining Background The synthesis of peptides is important for studies of their structure and for biological studies. The technique of solid phase peptide synthesis was developed by Merrifield and is used widely for synthesis of peptides containing up to 60 amino acids. You will carry out a solution phase synthesis of a dipeptide. The key reaction involves formation of the peptide bond by coupling the amino group of glycine to the carboxylic acid group of L-alanine. The reaction involves the addition of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) B to a solution containing the 'protected' alanine A; this leads to in situ formation of a mixed anhydride C which then undergoes reaction with the nucleophile D to give the dipeptide product E. R₁ ཨོ རིཡཱསུ ΝΗ с N-R OH R N=C=N-R₁ B H₂N. D E
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY