Embassy Motorcycles (EM) manufactures two lightweight motorcycles designed for easy handling and safety. The EZ-Rider model has a new engine and a low profile that make it easy to balance. The Lady-Sport model is slightly larger, uses a more traditional engine, and is specifically designed to appeal to women riders. Embassy produces the engines for both models at its Des Moines, Iowa plant. Each EZ-Rider engine requires 6 hours of manufacturing time, and each Lady-Sport engine requires 3 hours of manufacturing time. The Des Moines plant has 2,100 hours of engine manufacturing time available for the next production period. Embassy's motorcycle frame supplier can supply as many EZ-Rider frames as needed. However, the Lady-Sport frame is more complex and the supplier can only provide up to 240 Lady-Sport frames for the next production period. Final assembly and testing requires 2 hours for each EZ-Rider model and 2.5 hours for each Lady-Sport model. A maximum of 800 hours of assembly and testing time are available for the next production period. The company's accounting department projects a profit contribution of $2,400 for each EZ-Rider produced and $1.000 for each Lady-Sport produced. (a) Formulate a linear programming model that can be used to determine the number of units of each model that should be produced in order to maximize the total contribution to profit. (Let E represent the EZ-Rider model and let & represent the Lady-Sport model) 2.400 +1000 Max s.t. (E +(3 1✔ 2.100 L=240 2E + 2.5Ls 880 E, LE 0 (b) Solve the problem graphically. What is the optimal solution? (8.4)-(350.160 ✓ Engine manufacturing time Lady-Sport maximum Assembly and testing time
Embassy Motorcycles (EM) manufactures two lightweight motorcycles designed for easy handling and safety. The EZ-Rider model has a new engine and a low profile that make it easy to balance. The Lady-Sport model is slightly larger, uses a more traditional engine, and is specifically designed to appeal to women riders. Embassy produces the engines for both models at its Des Moines, Iowa plant. Each EZ-Rider engine requires 6 hours of manufacturing time, and each Lady-Sport engine requires 3 hours of manufacturing time. The Des Moines plant has 2,100 hours of engine manufacturing time available for the next production period. Embassy's motorcycle frame supplier can supply as many EZ-Rider frames as needed. However, the Lady-Sport frame is more complex and the supplier can only provide up to 240 Lady-Sport frames for the next production period. Final assembly and testing requires 2 hours for each EZ-Rider model and 2.5 hours for each Lady-Sport model. A maximum of 800 hours of assembly and testing time are available for the next production period. The company's accounting department projects a profit contribution of $2,400 for each EZ-Rider produced and $1.000 for each Lady-Sport produced. (a) Formulate a linear programming model that can be used to determine the number of units of each model that should be produced in order to maximize the total contribution to profit. (Let E represent the EZ-Rider model and let & represent the Lady-Sport model) 2.400 +1000 Max s.t. (E +(3 1✔ 2.100 L=240 2E + 2.5Ls 880 E, LE 0 (b) Solve the problem graphically. What is the optimal solution? (8.4)-(350.160 ✓ Engine manufacturing time Lady-Sport maximum Assembly and testing time
Practical Management Science
6th Edition
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:WINSTON, Wayne L.
Chapter2: Introduction To Spreadsheet Modeling
Section: Chapter Questions
Problem 20P: Julie James is opening a lemonade stand. She believes the fixed cost per week of running the stand...
Related questions
Question
Please help with solving Part B
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Recommended textbooks for you
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:
9781285869681
Author:
Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:
Cengage Learning
Production and Operations Analysis, Seventh Editi…
Operations Management
ISBN:
9781478623069
Author:
Steven Nahmias, Tava Lennon Olsen
Publisher:
Waveland Press, Inc.