DEXAMPLE 7-3 Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method. Problem: Solution: Given a fourbar crank-slider linkage with the link lengths L₂ = a = 40 mm, L3 = b = 120 mm, offset = c = -20 mm. For 02 = 60°, 002 = −30 rad/sec, and o₂ = 20 rad/sec², find α3 and linear acceleration of the slider for the open circuit. Use the angles, positions, and angular velocities found for the same linkage in Examples 4-2 and 6-8. (See Figure 7-6 for nomenclature.) 1 Example 4-2 found angle 03 = 152.91° and slider position d = 126.84 mm for the open circuit. Example 6-8 found the the coupler angular velocity 003 to be 5.616 rad/sec. 2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration α.3. α3 aα₂ cose₂-asin02 +bw sin03 bcos03 40(20) cos 60°-40(-30)² sin 60° +120(5.616)² sin 152.91° 120 cos 152.91° =271.94 rad/sec² (a) 3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration ä. ä=-aα₂ sine₂-aw cosе2 +bα3 sin03 +b² cos03 =-40(20) sin 60°-40(-30)² cos 60° +120(271.94)sin 152.91° +120(5.616)² cos152.91° =-7.203 m/sec² (b)
DEXAMPLE 7-3 Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method. Problem: Solution: Given a fourbar crank-slider linkage with the link lengths L₂ = a = 40 mm, L3 = b = 120 mm, offset = c = -20 mm. For 02 = 60°, 002 = −30 rad/sec, and o₂ = 20 rad/sec², find α3 and linear acceleration of the slider for the open circuit. Use the angles, positions, and angular velocities found for the same linkage in Examples 4-2 and 6-8. (See Figure 7-6 for nomenclature.) 1 Example 4-2 found angle 03 = 152.91° and slider position d = 126.84 mm for the open circuit. Example 6-8 found the the coupler angular velocity 003 to be 5.616 rad/sec. 2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration α.3. α3 aα₂ cose₂-asin02 +bw sin03 bcos03 40(20) cos 60°-40(-30)² sin 60° +120(5.616)² sin 152.91° 120 cos 152.91° =271.94 rad/sec² (a) 3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration ä. ä=-aα₂ sine₂-aw cosе2 +bα3 sin03 +b² cos03 =-40(20) sin 60°-40(-30)² cos 60° +120(271.94)sin 152.91° +120(5.616)² cos152.91° =-7.203 m/sec² (b)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
give me the answer using matlab code

Transcribed Image Text:DEXAMPLE 7-3
Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method.
Problem:
Solution:
Given a fourbar crank-slider linkage with the link lengths L₂ = a = 40 mm,
L3 = b = 120 mm, offset = c = -20 mm. For 02 = 60°, 002 = −30 rad/sec, and o₂ =
20 rad/sec², find α3 and linear acceleration of the slider for the open circuit. Use
the angles, positions, and angular velocities found for the same linkage in Examples
4-2 and 6-8.
(See Figure 7-6 for nomenclature.)
1 Example 4-2 found angle 03 = 152.91° and slider position d = 126.84 mm for the open circuit.
Example 6-8 found the the coupler angular velocity 003 to be 5.616 rad/sec.
2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration α.3.
α3
aα₂ cose₂-asin02 +bw sin03
bcos03
40(20) cos 60°-40(-30)² sin 60° +120(5.616)² sin 152.91°
120 cos 152.91°
=271.94 rad/sec²
(a)
3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration ä.
ä=-aα₂ sine₂-aw cosе2 +bα3 sin03 +b² cos03
=-40(20) sin 60°-40(-30)² cos 60° +120(271.94)sin 152.91° +120(5.616)² cos152.91°
=-7.203 m/sec²
(b)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY