Determine the equations describing (2) and (p) for the Hamiltonian given by A = 2 ² 2 + 1/2H (W² 8² + €₂8 + C) 2μ
Q: For a one-dimensional system with the Hamiltonian H = p2/2 − 1 / (2 q2), show that there is a…
A: Given that,H=p22-12q2D= pq2-HtWe have Liouville's theorem which is,dFdt = ∂F∂t+F, HHere F = DSo in…
Q: 7.40 *** The "spherical pendulum" is just a simple pendulum that is free to move in any sideways…
A:
Q: (c) The motion of a particle in a plane is governed by the Lagrangian (a² + ÿ²) + ¿(y& – xỷ). L =…
A:
Q: have two questions: 1) I don't understand how the derivative of z2 is obtained? The derivative of…
A: Derivatives of x^n is given by nx^(n-1) So derivative of z^2 is given by (d/dz)(z^2) = 2z as per…
Q: Problem 3 (a) Consider a homogeneous cylinder of mass M, radius R and height h. Show that the…
A: Given Data:The masses of the cylinder and the cone are M and m respectively.The height of the…
Q: This is for a solid sphere of radius R rolling down a hemisphere of radius 5R. please help me…
A:
Q: Consider the points A(−4, 2, 0), B(7,3,−2) and C(−2, −3,1) (a) Find a vector of length √6 in the…
A: Given points A(-4,2,0), B(7,3,-2) and C(-2,-3,1) AB→=7-(-4)i^+3-2j^+-2+0k^AB→=11i^+1j^-2k^…
Q: For motion in a plane with the Hamiltonian H = |p|n − a r−n, where p is the vector of the momenta…
A: Given: The Hamiltonian of the motion in a plane is The operator
Q: A small metal ball of mass m and negative charge −q0 is released from rest at the point (0,0,d) and…
A: The magnitude of electric field is given as,
Q: A particle of mass m slides under the gravity without friction along the parabolic path y = a x²…
A: Introduction: Lagrangian is a quantity that describes a physical system's state. Just the kinetic…
Q: The time-evolution of a physical system with one coordinate q is described by the La- grangian L = ?…
A: **as per our company guidelines we are supposed to answer only first 3 sub-parts. Kindly repost…
Q: A particle of mass m is moving in a bowl. The profile of the bowl is rotationally symmetric, and in…
A: Given: The vertical distance of the particle in the bowl is the function of time t is z(t) = h(r(t))
Q: Match the following transformations in which the Hamiltonian equations of motion are invariant. 1) P…
A:
Q: Find the mass of the lamina described by the inequalities x 20 and 7<y 37+V 49-x, given that its…
A:
Q: A small bead of mass m=1g moves without friction along the inner surface of a deep spherical cup,…
A:
Q: Prove the triple product identity Ax(B×C)= B(A·C)-C(A·B).
A:
Q: Suppose the following three conditions are satisfied: (i) v1, v2, 03, w are linearly independent.…
A: Option b and c are the correct answer w→ is the scalar multiple of z→ Span v1→,v2→,v3→,w→, z→=span…
Q: Calculate with C: unit circle counter clockwise z2 dz (2z–1)2 (with residual theorem application)
A:
Q: Consider the Lagrangian for a bead on a rotating horizontal wire: L = m/2 ( ̇q2 + ω2q2). (a) What is…
A: The specified Lagrangian is: L=12mq˙2+ω2q2 Lagrangian field theory is a classical field theory…
Q: The force F acting on a particle constraincd to move along the x-axis is given by the fucntion F(x)…
A: The equilibrium condition is that the net force will be zero. that is, Fx=0
Q: A particle of mass m is at rest on top of a smooth fixed sphere of radius a. Show that, if the…
A:
Q: If the kinetic energy T and the potential energy V of a mathematical system are given T = (k+;) i +…
A: The Lagrangian function is given by, L = T - V The Hamiltonian function is given by, Hq, p, t =…
Q: A) According to the Hartman Grobman theorem, the local behavior of the linearized system (saddle,…
A: A ) the Hartman Grobman theorem, the local behavior of the linearized system (saddle, node, etc.) is…
Q: Calculate the commutator 2m between the kinetic energy and the position operators for a particle…
A:


Step by step
Solved in 3 steps with 3 images

- (a) Let F₁ = x² 2 and F₂ = x x + y ŷ + z 2. Calculate the divergence and curl of F₁ and F₂. Which one can be written as the gradient of a scalar? Find a scalar potential that does the job. Which one can be written as the curl of a vector? Find a suitable vector potential. (b) Show that the field F3 = yz î + zx ŷ + xy 2 can be written both as the gradient of a scalar and as the curl of a vector. Find scalar and vector potentials for this function.Two particles, each of mass m, are connected by a light inflexible string of length l. The string passes through a small smooth hole in the centre of a smooth horizontal table, so that one particle is below the table and the other can move on the surface of the table. Take the origin of the (plane) polar coordinates to be the hole, and describe the height of the lower particle by the coordinate z, measured downwards from the table surface. Here, the total force acting on the mass which is on the table is -T r^ (r hat). Why?In a Hamiltonian system, what are the conditions for fixed points?
- solve only ( 4 ,5 ,6 )A block of mass m = 240 kg rests against a spring with a spring constant of k = 550 N/m on an inclined plane which makes an angle of θ degrees with the horizontal. Assume the spring has been compressed a distance d from its neutral position. Refer to the figure. (a) Set your coordinates to have the x-axis along the surface of the plane, with up the plane as positive, and the y-axis normal to the plane, with out of the plane as positive. Enter an expression for the normal force, FN, that the plane exerts on the block (in the y-direction) in terms of defined quantities and g. (b) Denoting the coefficient of static friction by μs, write an expression for the sum of the forces in the x-direction just before the block begins to slide up the inclined plane. Use defined quantities and g in your expression. (c) Assuming the plane is frictionless, what will the angle of the plane be, in degrees, if the spring is compressed by gravity a distance 0.1 m? (d) Assuming θ = 45 degrees and the…(a) What does the quadrupole formula (P) = = = (Qij Q³ ³) compute? Reason the answer. (b) A point mass m undergoes a harmonic motion along the z-axis with frequency w and amplitude L, x(t) = y(t) = 0, z(t) = L cos(wt). Show that the only non-vanishing component of the quadrupole moment tensor is = Im L² cos² (wt). (c) Use the quadrupole formula to compute the power radiated by the emission of gravitational waves. (Hint: recall that (cos(t)) = (sin(t)) = 0 and (cos² (t)) = (sin² (t)) = ½½ for a given frequency 2.)