Design a “bungee jump” apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 13 m long, and that the cords stretch in the jump an additional 24 m for a jumper whose mass is 80 kg, the heaviest adult you will allow to use your bungee jump (heavier customers would hit the ground). Focus on this instant of greatest tension and, starting from a fundamental principle, determine the spring stiffness k, for each of the two cords. Ks =
Design a “bungee jump” apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 13 m long, and that the cords stretch in the jump an additional 24 m for a jumper whose mass is 80 kg, the heaviest adult you will allow to use your bungee jump (heavier customers would hit the ground). Focus on this instant of greatest tension and, starting from a fundamental principle, determine the spring stiffness k, for each of the two cords. Ks =
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Energy Of A System
Section: Chapter Questions
Problem 44AP: Why is the following situation impossible? In a new casino, a supersized pinball machine is...
Related questions
Question
Design a “bungee jump” apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. Assume that you have cords that are 13 m long, and that the cords stretch in the jump an additional 24 m for a jumper whose mass is 80 kg, the heaviest adult you will allow to use your bungee jump (heavier customers would hit the ground). Focus on this instant of greatest tension and, starting from a fundamental principle, determine the spring stiffness k, for each of the two cords. Ks =
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning