C29. A female with an abnormally long chromosome 13 (and a normal homolog of chromosome 13) has children with a male with an abnormally short chromosome 11 (and a normal homolog of chromosome 11). What is the probability of producing an offspring that will have both a long chromosome 13 and a short chromosome 11? If such a child is produced, what is the probability that this child will eventually pass both abnormal chromosomes to one of their offspring?
Oogenesis
The formation of the ovum (mature female gamete) from undifferentiated germ cells is called oogenesis. This process takes place in the ovaries (female gonads). Oogenesis consists of three stages known as the multiplication phase, growth phase, and maturation phase.
Cell Division
Cell division involves the formation of new daughter cells from the parent cells. It is a part of the cell cycle that takes place in both prokaryotic and eukaryotic organisms. Cell division is required for three main reasons:
C29. A female with an abnormally long chromosome 13 (and a normal homolog of chromosome 13) has children with a male with an abnormally short chromosome 11 (and a normal homolog of chromosome 11). What is the probability of producing an offspring that will have both a long chromosome 13 and a short chromosome 11? If such a child is produced, what is the probability that this child will eventually pass both abnormal chromosomes to one of their offspring?
Step by step
Solved in 3 steps