By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid bits. For this exercise, you will examine how a cache's configuration affects the total amount of SRAM needed to implement it as well as the performance of the cache. For all parts, assume that the caches are byte addressable, and that addresses and words are 64 bits. (a) Calculate the total number of bits required to implement a 32 KiB cache with two-word blocks. (b) Calculate the total number of bits required to implement a 64 KiB cache with 16-word blocks. How much bigger is this cache than the 32 KiB cache described in Part a? (Notice that, by changing the block size, we doubled the amount of data without doubling the total size of the cache.)
By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid bits. For this exercise, you will examine how a cache's configuration affects the total amount of SRAM needed to implement it as well as the performance of the cache. For all parts, assume that the caches are byte addressable, and that addresses and words are 64 bits. (a) Calculate the total number of bits required to implement a 32 KiB cache with two-word blocks. (b) Calculate the total number of bits required to implement a 64 KiB cache with 16-word blocks. How much bigger is this cache than the 32 KiB cache described in Part a? (Notice that, by changing the block size, we doubled the amount of data without doubling the total size of the cache.)
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid bits. For this exercise, you will examine how a cache's configuration affects the total amount of SRAM needed to implement it as well as the performance of the cache. For all parts, assume that the caches are byte addressable, and that addresses and words are 64 bits.
(a)
Calculate the total number of bits required to implement a 32 KiB cache with two-word blocks.
(b)
Calculate the total number of bits required to implement a 64 KiB cache with 16-word blocks. How much bigger is this cache than the 32 KiB cache described in Part a? (Notice that, by changing the block size, we doubled the amount of data without doubling the total size of the cache.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education