beam of 2 Mev neutrons is incident on a slab of heavy water (D2O). The total cross-sections of deuterium and oxygen at this energy are 2.6 b and 1.6 b, respectively. A) What is the macroscopic total cross section of D2O at 2 Mev? B) How thick must the slab be to reduce the intensity of uncollided beam by a factor of 10? C) If an incident neutron has a collision in the slab, what is the relative probability that it collides with deuterium?
beam of 2 Mev neutrons is incident on a slab of heavy water (D2O). The total cross-sections of deuterium and oxygen at this energy are 2.6 b and 1.6 b, respectively. A) What is the macroscopic total cross section of D2O at 2 Mev? B) How thick must the slab be to reduce the intensity of uncollided beam by a factor of 10? C) If an incident neutron has a collision in the slab, what is the relative probability that it collides with deuterium?
Related questions
Question
A beam of 2 Mev neutrons is incident on a slab of heavy water (D2O). The total cross-sections of deuterium and oxygen at this energy are 2.6 b and 1.6 b, respectively.
A) What is the macroscopic total cross section of D2O at 2 Mev?
B) How thick must the slab be to reduce the intensity of uncollided beam by a factor of 10?
C) If an incident neutron has a collision in the slab, what is the relative probability that it collides with deuterium?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)