(b) A 120 kVA, 2300:230 V, 50 Hz, single-phase transformer has the following parameters: Resistance of the primary (high-voltage) winding: Resistance of the secondary (low-voltage) winding: Leakage reactance of the primary (high-voltage) winding: Leakage reactance of the secondary (low-voltage) winding: Core loss resistance (referred to the primary): Magnetising reactance (referred to the primary): R₁ = 0.2 2 R2 = 0.002 S X₁ = 0.4 X2=0.004 2 Re = 12.5 k Xm = 2.9 k The transformer is delivering 98.5 kW to a load at 230 V and 0.85 power factor lagging. (i) Draw the cantilever equivalent circuit of the transformer (including component values) referred to the primary (high-voltage) side and in which the shunt branch has been moved to the primary. (ii) In Fig. 1.3, complete the phasor diagram which relates the primary voltage V₁ to the referred secondary voltage V2. (Notes: Ignore the exciting current. The referred secondary voltage V2 is shown in Fig. 1.3 at an assumed phase reference of 0°. Make sure you label all phasors clearly numerical values are not required.) (iii) Calculate the phasor load current 12, referred to the primary. (iv) Calculate the phasor primary voltage V₁ (you may ignore the exciting current). Figure 1.3.
(b) A 120 kVA, 2300:230 V, 50 Hz, single-phase transformer has the following parameters: Resistance of the primary (high-voltage) winding: Resistance of the secondary (low-voltage) winding: Leakage reactance of the primary (high-voltage) winding: Leakage reactance of the secondary (low-voltage) winding: Core loss resistance (referred to the primary): Magnetising reactance (referred to the primary): R₁ = 0.2 2 R2 = 0.002 S X₁ = 0.4 X2=0.004 2 Re = 12.5 k Xm = 2.9 k The transformer is delivering 98.5 kW to a load at 230 V and 0.85 power factor lagging. (i) Draw the cantilever equivalent circuit of the transformer (including component values) referred to the primary (high-voltage) side and in which the shunt branch has been moved to the primary. (ii) In Fig. 1.3, complete the phasor diagram which relates the primary voltage V₁ to the referred secondary voltage V2. (Notes: Ignore the exciting current. The referred secondary voltage V2 is shown in Fig. 1.3 at an assumed phase reference of 0°. Make sure you label all phasors clearly numerical values are not required.) (iii) Calculate the phasor load current 12, referred to the primary. (iv) Calculate the phasor primary voltage V₁ (you may ignore the exciting current). Figure 1.3.
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.9P
Related questions
Question
please answer all parts of the question with step by step working thank you
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 7 images
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning