B-4-10. Consider the liquid-level control system shown in Figure 4-52. The inlet valve is controlled by a hydraulic integral controller. Assume that the steady-state inflow rate is and steady-state outflow rate is also Q, the steady-state head is H, steady-state pilot valve displacement is X = 0, and steady-state valve position is Y. We assume that the set point R corresponds to the steady-state head H. The set point is fixed. Assume also that the disturbance inflow rate 94, which is a small quantity, is applied to the water tank at = 0. This disturbance causes the head to change from to H+h. This change results in a change in the outflow rate by qo. Through the hydraulic controller, the change in head causes a change in the inflow rate from 0 to + q. (The integral controller tends to keep the head constant as much as possible in the presence of disturbances.) We assume that all changes are of small quantities.
B-4-10. Consider the liquid-level control system shown in Figure 4-52. The inlet valve is controlled by a hydraulic integral controller. Assume that the steady-state inflow rate is and steady-state outflow rate is also Q, the steady-state head is H, steady-state pilot valve displacement is X = 0, and steady-state valve position is Y. We assume that the set point R corresponds to the steady-state head H. The set point is fixed. Assume also that the disturbance inflow rate 94, which is a small quantity, is applied to the water tank at = 0. This disturbance causes the head to change from to H+h. This change results in a change in the outflow rate by qo. Through the hydraulic controller, the change in head causes a change in the inflow rate from 0 to + q. (The integral controller tends to keep the head constant as much as possible in the presence of disturbances.) We assume that all changes are of small quantities.
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY