Another series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6x10' K. Because the temperature at the center of the Sun is only 1.5x10 K, the following cycle below produces less than 10% of the Sun's energy. (Enter the mass number in the first raised box, the atomic number in the second lower box, and the element in the third box.) (a) A high-energy proton is absorbed by 12c. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C.
Another series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6x10' K. Because the temperature at the center of the Sun is only 1.5x10 K, the following cycle below produces less than 10% of the Sun's energy. (Enter the mass number in the first raised box, the atomic number in the second lower box, and the element in the third box.) (a) A high-energy proton is absorbed by 12c. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images