Another series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6 x107 K. Because the temperature at the center of the Sun is only 1.5 x 107 K, the following cycle produces less than 10% of the Sun’s energy. (a) A high - energy proton is absorbed by 12C. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C . (d) Nucleus C absorbs a proton to produce nucleus D and a gamma ray. Identify nucleus D. (e) Nucleus D decays through positron emission to produce nucleus E. Identify nucleus E. (f ) Nucleus E absorbs a proton to produce nucleus F plus an alpha particle. What is nucleus F? Note: If nucleus F is not 12C— that is, the nucleus you started with — you have made an error and should review the sequence of events.
Nuclear Fusion
Nuclear fusion is a type of nuclear reaction. In nuclear fusion, two or more than two lighter atomic nuclei combine to form a heavier nucleus. During this process, an enormous amount of energy is released. This energy is called nuclear energy. Nuclear fusion is the energy source of the sun and stars.
Fusion Bomb
A fusion bomb is also known as a thermonuclear bomb or hydrogen bomb which releases a large amount of explosive energy during a nuclear chain reaction when the lighter nuclei in it, combine to form heavier nuclei, and a large amount of radiation is released. It is an uncontrolled, self-sustaining nuclear chain reaction where isotopes of hydrogen combine under very high temperature to form helium. They work on the principle of operation of atomic fusion. The isotopes of Hydrogen are deuterium and tritium, where they combine their masses and have greater mass than the product nuclei, get heated at high temperatures, and releases energy.
Another series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6 x107 K. Because the temperature at the center of the Sun is only 1.5 x 107 K, the following cycle produces less than 10% of the Sun’s energy. (a) A high - energy proton is absorbed by 12C. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C . (d) Nucleus C absorbs a proton to produce nucleus D and a gamma ray. Identify nucleus D. (e) Nucleus D decays through positron emission to produce nucleus E. Identify nucleus E. (f ) Nucleus E absorbs a proton to produce nucleus F plus an alpha particle. What is nucleus F? Note: If nucleus F is not 12C— that is, the nucleus you started with — you have made an error and should review the sequence of events.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images