An observational study was conducted where subjects were randomly sampled and then had their resting heart rate recorded, as well as their smoking status (0 for non-smoker and 1 for smoker) and how much they exercise on average each day (in hours). A linear regression model is fit where we have response variable of resting heart rate and explanatory variables of smoking status (0 for non-smoker and 1 for smoker) and exercise amount per day in hours, along with an interaction between smoking status and exercise amount. The output is below: Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 84.8172 1.9553 43.377 <2e-16 *** Smoke -2.2645 5.0665 -0.447 0.6551 Exercise -7.3684 0.8075 -9.125 <2e-16 *** Smoke: Exercise 1.9562 2.5510 0.767 0.4442 Signif. codes: O **** 0.001 **** 0.01 *** 0.05 .' 0.1 Residual standard error: 8.396 on 228 degrees of freedom Multiple R-squared: 0.2971, F-statistic: 32.13 on 3 and 228 DF, Adjusted R-squared: p-value: < 2.2e-16 0.2879 The model that was fit is: Rest; = Bo + B Smoke; + B2 Eercise; + B3Smoke; * Exercise; + €;
An observational study was conducted where subjects were randomly sampled and then had their resting heart rate recorded, as well as their smoking status (0 for non-smoker and 1 for smoker) and how much they exercise on average each day (in hours). A linear regression model is fit where we have response variable of resting heart rate and explanatory variables of smoking status (0 for non-smoker and 1 for smoker) and exercise amount per day in hours, along with an interaction between smoking status and exercise amount. The output is below: Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 84.8172 1.9553 43.377 <2e-16 *** Smoke -2.2645 5.0665 -0.447 0.6551 Exercise -7.3684 0.8075 -9.125 <2e-16 *** Smoke: Exercise 1.9562 2.5510 0.767 0.4442 Signif. codes: O **** 0.001 **** 0.01 *** 0.05 .' 0.1 Residual standard error: 8.396 on 228 degrees of freedom Multiple R-squared: 0.2971, F-statistic: 32.13 on 3 and 228 DF, Adjusted R-squared: p-value: < 2.2e-16 0.2879 The model that was fit is: Rest; = Bo + B Smoke; + B2 Eercise; + B3Smoke; * Exercise; + €;
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman