An enzyme catalyzes the hydrolysis of an ester with a certain activity, but this activity is lost in a 3 M urea solution. What is the most likely explanation for the loss of activity? (A) Urea binds to the active site of the enzyme competitively with the substrate. (B) Urea causes the cleavage of the peptide bonds in the enzyme. (C) Urea causes the enzyme to denature and lose its specific three-dimensional shape. (D) Urea reacts with disulfide bonds in the enzyme.
An enzyme catalyzes the hydrolysis of an ester with a certain activity, but this activity is lost in a 3 M urea solution. What is the most likely explanation for the loss of activity? (A) Urea binds to the active site of the enzyme competitively with the substrate. (B) Urea causes the cleavage of the peptide bonds in the enzyme. (C) Urea causes the enzyme to denature and lose its specific three-dimensional shape. (D) Urea reacts with disulfide bonds in the enzyme.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question

Transcribed Image Text:An enzyme catalyzes the hydrolysis of an ester with a
certain activity, but this activity is lost in a 3 M urea
solution. What is the most likely explanation for the loss
of activity?
(A) Urea binds to the active site of the enzyme
competitively with the substrate.
(B) Urea causes the cleavage of the peptide bonds in the
enzyme.
(C) Urea causes the enzyme to denature and lose its
specific three-dimensional shape.
(D) Urea reacts with disulfide bonds in the enzyme.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY