An ammonia ice plant operates on simple saturation cycle at the following temperatures. Condensing temperature 40°C Evaporating temperature -15°C It produces 10 tons of ice per day at -5°C from water at 30°C. Determine: (a) Capacity of the refrigeration plant. (b) Mass flow rate of refrigerant. (c) Isentropic discharge temperature. (d) Compressor dimensions (bore and stroke) if its volumetric efficiency is assumed as 65%. The compressor is to run at 1400 rpm. Take stroke/ bore ratio (L/D) as 1.2. (e) Horsepower of the compressor if its adiabatic efficiency is taken as 85% and mechanical efficiency as 95%. (f) Theoretical and actual COP.
An ammonia ice plant operates on simple saturation cycle at the following temperatures. Condensing temperature 40°C Evaporating temperature -15°C It produces 10 tons of ice per day at -5°C from water at 30°C. Determine: (a) Capacity of the refrigeration plant. (b) Mass flow rate of refrigerant. (c) Isentropic discharge temperature. (d) Compressor dimensions (bore and stroke) if its volumetric efficiency is assumed as 65%. The compressor is to run at 1400 rpm. Take stroke/ bore ratio (L/D) as 1.2. (e) Horsepower of the compressor if its adiabatic efficiency is taken as 85% and mechanical efficiency as 95%. (f) Theoretical and actual COP.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
An ammonia ice plant operates on simple saturation cycle at the following temperatures.
Condensing temperature 40°C
Evaporating temperature -15°C
It produces 10 tons of ice per day at -5°C from water at 30°C.
Determine:
(a) Capacity of the refrigeration plant.
(b) Mass flow rate of refrigerant.
(c) Isentropic discharge temperature.
(d) Compressor dimensions (bore and stroke) if its volumetric efficiency is assumed as 65%. The compressor is to run at 1400 rpm. Take stroke/ bore ratio (L/D) as 1.2.
(e) Horsepower of the compressor if its adiabatic efficiency is taken as 85% and
(f) Theoretical and actual COP.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY