An air pump is used to fill a rigid gas bottle with air. The pump is connected to the gas bottle via a rigid pipe. The pump consists of a piston of internal diameter d=0.08 m and a cylinder with a stroke L=0.3m. Air enters the pump through an orifice located at the bottom of the cylinder to raise the pressure in the pump to atmospheric pressure. Air, drawn into the pump through the orifice, mixes completely and adiabatically with the cylinder contents. A valve allows the bottle's refill. The valve opens when the pump pressure is equal to the gas bottle. The valve is always closed when the pump pressure is below the gas bottle pressure. Pressure drop across the valve can be neglected. The bottle, the connecting pipe and the pump are thermally insulated. Air in the pump and connecting pipe undergoes isentropic compression and expansion processes. I F-one The working fluid (air) can be considered a perfect gas with R=287 J/KgK, cp=1005 J/KgK and y=1.4. Initially the piston is located at the bottom of the cylinder, the valve is open and pressure and temperature are 1bar and 298K in the pump, the bottle and the surrounding ambient air. Air transferring to the gas bottle mixes completely and adiabatically on entering. Determine: 5) Calculate the mass and temperature of air in the pump (i.e. the cylinder and connecting pipe) after the orifice has been exposed and the pressure has risen to atmospheric pressure (bottle valve is now closed).
An air pump is used to fill a rigid gas bottle with air. The pump is connected to the gas bottle via a rigid pipe. The pump consists of a piston of internal diameter d=0.08 m and a cylinder with a stroke L=0.3m. Air enters the pump through an orifice located at the bottom of the cylinder to raise the pressure in the pump to atmospheric pressure. Air, drawn into the pump through the orifice, mixes completely and adiabatically with the cylinder contents. A valve allows the bottle's refill. The valve opens when the pump pressure is equal to the gas bottle. The valve is always closed when the pump pressure is below the gas bottle pressure. Pressure drop across the valve can be neglected. The bottle, the connecting pipe and the pump are thermally insulated. Air in the pump and connecting pipe undergoes isentropic compression and expansion processes. I F-one The working fluid (air) can be considered a perfect gas with R=287 J/KgK, cp=1005 J/KgK and y=1.4. Initially the piston is located at the bottom of the cylinder, the valve is open and pressure and temperature are 1bar and 298K in the pump, the bottle and the surrounding ambient air. Air transferring to the gas bottle mixes completely and adiabatically on entering. Determine: 5) Calculate the mass and temperature of air in the pump (i.e. the cylinder and connecting pipe) after the orifice has been exposed and the pressure has risen to atmospheric pressure (bottle valve is now closed).
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY